""" This project adapts code from two existing open-source projects: SALMONN by ByteDance: https://github.com/bytedance/SALMONN Original project for multimodal language modeling including audio. Llama 3 Typhoon Audio Preview by SCB 10X: https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-audio-preview An adaptation of SALMONN for audio processing. Modifications and additional features have been implemented on top of these foundational works. """ import os import gc import math import logging import warnings import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from transformers import ( PreTrainedModel, Qwen2Config, Qwen2Tokenizer, Qwen2ForCausalLM, WhisperConfig, WhisperFeatureExtractor, WhisperModel, ) from peft import ( LoraConfig, TaskType, get_peft_model ) import torchaudio.compliance.kaldi as ta_kaldi from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from transformers.models.bert.configuration_bert import BertConfig from typing import Any, Dict, List, Optional, Tuple from .configuration_pathumma_audio import PathummaAudioConfig logger = logging.getLogger(__name__) class PathummaAudioModel(PreTrainedModel): config_class = PathummaAudioConfig def __init__(self, config): super().__init__(config) if isinstance(config.torch_dtype, str): self.torch_dtype = getattr(torch, config.torch_dtype, torch.bfloat16) else: self.torch_dtype = config.torch_dtype # Qwen2 tokenizer self.qwen2_tokenizer = Qwen2Tokenizer.from_pretrained( config.llm_path, use_fast=False, ) # self.qwen2_tokenizer.add_special_tokens({"pad_token": "<|endoftext|>") # self.qwen2_tokenizer.padding_side = "right" # Qwen2 Model if config.init_from_scratch: qwen2_config = Qwen2Config.from_pretrained(config.llm_path, torch_dtype=self.torch_dtype) self.qwen2_model = Qwen2ForCausalLM(qwen2_config).to(self.torch_dtype) else: self.qwen2_model = Qwen2ForCausalLM.from_pretrained( config.llm_path, torch_dtype=self.torch_dtype ) # Load and configure lora adapter if config.lora: self.peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=config.lora_infer_mode, r=config.lora_rank, lora_alpha=config.lora_alpha, lora_dropout=config.lora_dropout, target_modules=config.target_modules, ) self.qwen2_model = get_peft_model(self.qwen2_model, self.peft_config) # self.qwen2_model.print_trainable_parameters() # Whisper feature extractor self.feature_extractor = WhisperFeatureExtractor.from_pretrained(config.whisper_path) # Whisper encoder model if config.init_from_scratch: whisper_config = WhisperConfig.from_pretrained( config.whisper_path, torch_dtype=self.torch_dtype ) self.whisper_encoder = WhisperModel(whisper_config).encoder.to(self.torch_dtype) else: self.whisper_encoder = WhisperModel.from_pretrained( config.whisper_path, torch_dtype=self.torch_dtype, ).encoder self.ln_speech = nn.LayerNorm(self.whisper_encoder.config.d_model, dtype=self.torch_dtype) # Beats model if config.init_from_scratch: beats_cfg = BEATsConfig() self.beats = BEATs(beats_cfg) else: beats_ckpt = torch.load(config.beats_path, map_location='cpu') beats_cfg = BEATsConfig(beats_ckpt['cfg']) self.beats = BEATs(beats_cfg) self.beats.load_state_dict(beats_ckpt['model']) self.beats.to(self.torch_dtype) self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim, dtype=self.torch_dtype) # Q-former model self.second_per_window = config.second_per_window self.second_stride = config.second_stride self.window_level_qformer, self.query_tokens = self.init_window_level_qformer( num_query_token = config.qformer_query_token, num_hidden_layers = config.qformer_hidden_layers, encoder_width = self.whisper_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, ) self.window_level_qformer.bert.embeddings.word_embeddings = None self.window_level_qformer.bert.embeddings.position_embeddings = None for layer in self.window_level_qformer.bert.encoder.layer: layer.output = None layer.intermediate = None self.window_level_qformer.cls = None self.qformer_qwen2_proj = nn.Linear( self.window_level_qformer.config.hidden_size, self.qwen2_model.config.hidden_size, dtype=self.torch_dtype ) def init_window_level_qformer(self, num_query_token, num_hidden_layers, encoder_width): encoder_config = BertConfig() encoder_config.num_hidden_layers = num_hidden_layers encoder_config.encoder_width = encoder_width encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = 1 encoder_config.query_length = num_query_token qformer = BertLMHeadModel(config=encoder_config).to(self.torch_dtype) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size, dtype=self.torch_dtype) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return qformer, query_tokens def encode_auditory_features(self, spectrogram, raw_wave): # whisper spectrogram = spectrogram.to(self.torch_dtype) speech_embeds = self.whisper_encoder(spectrogram, return_dict=True).last_hidden_state speech_embeds = self.ln_speech(speech_embeds) # beats padding_mask = torch.zeros(raw_wave.shape).to(raw_wave.device).bool() audio_embeds, _ = self.beats.extract_features(raw_wave, padding_mask=padding_mask, feature_only=True, torch_dtype=self.torch_dtype) audio_embeds = self.ln_audio(audio_embeds) # auditory embeds if audio_embeds.size(1) < speech_embeds.size(1): audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) elif audio_embeds.size(1) > speech_embeds.size(1): speech_embeds = F.pad(speech_embeds, (0, 0, 0, audio_embeds.size(1) - speech_embeds.size(1))) speech_audio_embeds = torch.cat((speech_embeds, audio_embeds), dim=-1) # q-former B, T, C = speech_audio_embeds.shape kernel = round(T * self.second_per_window / 30.0) stride = round(T * self.second_stride / 30.0) kernel = (1, kernel) stride = (1, stride) speech_audio_embeds_tr = speech_audio_embeds.transpose(1, 2).unsqueeze(2) speech_audio_embeds_overlap = F.unfold(speech_audio_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) _, _, L = speech_audio_embeds_overlap.shape speech_audio_embeds_overlap = speech_audio_embeds_overlap.view(B, -1, kernel[1], L) speech_audio_embeds_overlap = torch.permute(speech_audio_embeds_overlap, [0, 3, 2, 1]) speech_audio_embeds = speech_audio_embeds_overlap.reshape(-1, kernel[1], C) speech_audio_atts = torch.ones(speech_audio_embeds.size()[:-1], dtype=torch.long).to(speech_audio_embeds.device) query_tokens = self.query_tokens.expand(speech_audio_embeds.shape[0], -1, -1) query_output = self.window_level_qformer.bert( query_embeds=query_tokens, encoder_hidden_states=speech_audio_embeds, encoder_attention_mask=speech_audio_atts, return_dict=True ) auditory_embeds = self.qformer_qwen2_proj(query_output.last_hidden_state) auditory_embeds = auditory_embeds.view(B, -1, auditory_embeds.size(2)).contiguous() auditory_atts = torch.ones(auditory_embeds.size()[:-1], dtype=torch.long).to(auditory_embeds.device) return auditory_embeds, auditory_atts def prompt_wrap(self, auditory_embeds, auditory_atts, prompts): # prompt_template = "<|im_start|>user\n {}<|im_end|>\n<|im_start|>assistant\n" prompt_template = "<|im_start|>system\nYou are assistant<|im_end|>\n<|im_start|>user\n {}<|im_end|>\n<|im_start|>assistant\n" if not isinstance(prompts, List): prompts = [prompts] prompt_before = [] prompt_after = [] for prompt in prompts: before, after = prompt_template.format(prompt).split("") prompt_before.append(before) prompt_after.append(after) # Prompt before prompt_before_tokens = self.qwen2_tokenizer( prompt_before, return_tensors="pt", add_special_tokens=False ).to(auditory_embeds.device) prompt_before_embeds = self.qwen2_model.model.model.embed_tokens(prompt_before_tokens.input_ids) # Prompt prompt prompt_after_tokens = self.qwen2_tokenizer( prompt_after, return_tensors="pt", padding="longest", add_special_tokens=False ).to(auditory_embeds.device) prompt_after_embeds = self.qwen2_model.model.model.embed_tokens(prompt_after_tokens.input_ids) wrapped_embeds = torch.cat([prompt_before_embeds, auditory_embeds, prompt_after_embeds], dim=1) wrapped_atts = torch.cat([prompt_before_tokens.attention_mask, auditory_atts, prompt_after_tokens.attention_mask], dim=1) return wrapped_embeds, wrapped_atts def forward( self, raw_wave, spectrogram, prompt, completion, **kwargs ): auditory_embeds, auditory_atts = self.encode_auditory_features(spectrogram, raw_wave) input_embeds, input_atts = self.prompt_wrap(auditory_embeds, auditory_atts, prompt) end_sym = self.qwen2_tokenizer.eos_token completion = [c + end_sym for c in completion] next_tokens = self.qwen2_tokenizer( completion, return_tensors="pt", padding="longest", truncation=True, max_length=512, add_special_tokens=False ).to(spectrogram.device) next_embeds = self.qwen2_model.model.model.embed_tokens(next_tokens.input_ids) labels = next_tokens.input_ids.masked_fill( next_tokens.input_ids == self.qwen2_tokenizer.pad_token_id, -100 ) empty_labels = torch.full( (input_atts.shape[0], input_atts.shape[1]), -100, dtype=torch.long, device=spectrogram.device ) labels = torch.cat([empty_labels, labels], dim=1) embeds = torch.cat([input_embeds, next_embeds], dim=1) atts = torch.cat([input_atts, next_tokens.attention_mask], dim=1) # _, _, C = logits.shape # # Shift token < n will predict n # shift_preds = logits[:, empty_labels.size(1) - 1: -1, :].contiguous().view(-1, C).argmax(dim=-1) # shift_labels = labels[:, empty_labels.size(1):].contiguous().view(-1) # mask = shift_labels != -100 # correct = (shift_preds[mask] == shift_labels[mask]).sum().float() # total = mask.sum() return self.qwen2_model( inputs_embeds=embeds, attention_mask=atts, return_dict=True, labels=labels, **kwargs ) def generate( self, raw_wave, prompts, device, **kwargs ): if isinstance(raw_wave, torch.Tensor): raw_wave = raw_wave.cpu().numpy() if raw_wave.ndim == 1: raw_wave = np.expand_dims(raw_wave, axis=0) spectrogram = self.feature_extractor(raw_wave, sampling_rate=16000, return_tensors="pt").input_features.to(device) raw_wave = torch.from_numpy(raw_wave).to(device) auditory_embeds, auditory_atts = self.encode_auditory_features(spectrogram, raw_wave) embeds, atts = self.prompt_wrap(auditory_embeds, auditory_atts, prompts) outputs = self.qwen2_model.generate( inputs_embeds=embeds, attention_mask=atts, bos_token_id=self.qwen2_tokenizer.bos_token_id, eos_token_id=self.qwen2_tokenizer.eos_token_id, pad_token_id=self.qwen2_tokenizer.pad_token_id, **kwargs ) output_texts = self.qwen2_tokenizer.batch_decode(outputs, skip_special_tokens=True) return output_texts # BEATs class BEATsConfig: def __init__(self, cfg=None): self.input_patch_size: int = 16 # path size of patch embedding self.embed_dim: int = 512 # patch embedding dimension self.conv_bias: bool = False # include bias in conv encoder self.encoder_layers: int = 12 # num encoder layers in the transformer self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN self.encoder_attention_heads: int = 12 # num encoder attention heads self.activation_fn: str = "gelu" # activation function to use self.layer_wise_gradient_decay_ratio: float = 0.6 # ratio for layer-wise gradient decay self.layer_norm_first: bool = False # apply layernorm first in the transformer self.deep_norm: bool = True # apply deep_norm first in the transformer # dropouts self.dropout: float = 0.0 # dropout probability for the transformer self.attention_dropout: float = 0.0 # dropout probability for attention weights self.activation_dropout: float = 0.0 # dropout probability after activation in FFN self.encoder_layerdrop: float = 0.05 # probability of dropping a tarnsformer layer self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) # positional embeddings self.conv_pos: int = 128 # number of filters for convolutional positional embeddings self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding # relative position embedding self.relative_position_embedding: bool = True # apply relative position embedding self.num_buckets: int = 320 # number of buckets for relative position embedding self.max_distance: int = 800 # maximum distance for relative position embedding self.gru_rel_pos: bool = True # apply gated relative position embedding # label predictor self.finetuned_model: bool = True # whether the model is a fine-tuned model. self.predictor_dropout: float = 0.0 # dropout probability for the predictor self.predictor_class: int = 527 # target class number for the predictor if cfg is not None: self.update(cfg) def update(self, cfg: dict): self.__dict__.update(cfg) class BEATs(nn.Module): def __init__( self, cfg: BEATsConfig, ) -> None: super().__init__() logger.info(f"BEATs Config: {cfg.__dict__}") self.cfg = cfg self.embed = cfg.embed_dim self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.input_patch_size = cfg.input_patch_size self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size, bias=cfg.conv_bias) self.dropout_input = nn.Dropout(cfg.dropout_input) assert not cfg.deep_norm or not cfg.layer_norm_first self.encoder = TransformerEncoder(cfg) self.layer_norm = nn.LayerNorm(self.embed) if cfg.finetuned_model: self.predictor_dropout = nn.Dropout(cfg.predictor_dropout) self.predictor = nn.Linear(cfg.encoder_embed_dim, cfg.predictor_class) else: self.predictor = None def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view( padding_mask.size(0), features.size(1), -1 ) padding_mask = padding_mask.all(-1) return padding_mask def preprocess( self, source: torch.Tensor, fbank_mean: float = 15.41663, fbank_std: float = 6.55582, ) -> torch.Tensor: fbanks = [] for waveform in source: waveform = waveform.unsqueeze(0) * 2 ** 15 fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10) ## problem fbanks.append(fbank) fbank = torch.stack(fbanks, dim=0) fbank = (fbank - fbank_mean) / (2 * fbank_std) return fbank def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, fbank_mean: float = 15.41663, fbank_std: float = 6.55582, feature_only=False, torch_dtype=torch.bfloat16, ): fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std).to(torch_dtype) if padding_mask is not None: padding_mask = self.forward_padding_mask(fbank, padding_mask) fbank = fbank.unsqueeze(1) features = self.patch_embedding(fbank) features = features.reshape(features.shape[0], features.shape[1], -1) features = features.transpose(1, 2) features = self.layer_norm(features) if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) x = self.dropout_input(features) x, layer_results = self.encoder( x, padding_mask=padding_mask, ) if not feature_only and self.predictor is not None: x = self.predictor_dropout(x) logits = self.predictor(x) if padding_mask is not None and padding_mask.any(): logits[padding_mask] = 0 logits = logits.sum(dim=1) logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(logits) else: logits = logits.mean(dim=1) lprobs = torch.sigmoid(logits) return lprobs, padding_mask else: return x, padding_mask class TransformerEncoder(nn.Module): def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.pos_conv = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.parametrizations.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) if hasattr(args, "relative_position_embedding"): self.relative_position_embedding = args.relative_position_embedding self.num_buckets = args.num_buckets self.max_distance = args.max_distance else: self.relative_position_embedding = False self.num_buckets = 0 self.max_distance = 0 self.layers = nn.ModuleList( [ TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, deep_norm=args.deep_norm, has_relative_attention_bias=self.relative_position_embedding, num_buckets=self.num_buckets, max_distance=self.max_distance, gru_rel_pos=args.gru_rel_pos, encoder_layers=args.encoder_layers, ) for i in range(args.encoder_layers) ] ) if self.relative_position_embedding: for i in range(1, args.encoder_layers): del self.layers[i].self_attn.relative_attention_bias self.layers[i].self_attn.relative_attention_bias = self.layers[0].self_attn.relative_attention_bias self.layer_norm_first = args.layer_norm_first self.layer_norm = nn.LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) if args.deep_norm: deep_norm_beta = math.pow(8 * args.encoder_layers, -1 / 4) for i in range(args.encoder_layers): nn.init.xavier_normal_(self.layers[i].self_attn.k_proj.weight, gain=1) nn.init.xavier_normal_(self.layers[i].self_attn.v_proj.weight, gain=deep_norm_beta) nn.init.xavier_normal_(self.layers[i].self_attn.q_proj.weight, gain=1) nn.init.xavier_normal_(self.layers[i].self_attn.out_proj.weight, gain=deep_norm_beta) nn.init.xavier_normal_(self.layers[i].fc1.weight, gain=deep_norm_beta) nn.init.xavier_normal_(self.layers[i].fc2.weight, gain=deep_norm_beta) self.layer_wise_gradient_decay_ratio = getattr(args, "layer_wise_gradient_decay_ratio", 1) def forward(self, x, padding_mask=None, layer=None): x, layer_results = self.extract_features(x, padding_mask, layer) if self.layer_norm_first and layer is None: x = self.layer_norm(x) return x, layer_results def extract_features(self, x, padding_mask=None, tgt_layer=None): if padding_mask is not None: x[padding_mask] = 0 x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) layer_results = [] z = None if tgt_layer is not None: layer_results.append((x, z)) r = None pos_bias = None for i, layer in enumerate(self.layers): if self.layer_wise_gradient_decay_ratio != 1.0: x = GradMultiply.apply(x, self.layer_wise_gradient_decay_ratio) dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_bias) if tgt_layer is not None: layer_results.append((x, z)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) return x, layer_results class TransformerSentenceEncoderLayer(nn.Module): def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, deep_norm: bool = False, has_relative_attention_bias: bool = False, num_buckets: int = 0, max_distance: int = 0, rescale_init: bool = False, gru_rel_pos: bool = False, encoder_layers: int = 0, ) -> None: super().__init__() self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout self.activation_name = activation_fn self.activation_fn = get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, has_relative_attention_bias=has_relative_attention_bias, num_buckets=num_buckets, max_distance=max_distance, rescale_init=rescale_init, gru_rel_pos=gru_rel_pos, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) if self.activation_name == "glu": self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") else: self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) self.final_layer_norm = nn.LayerNorm(self.embedding_dim) self.deep_norm = deep_norm if self.deep_norm: self.deep_norm_alpha = math.pow(2 * encoder_layers, 1 / 4) else: self.deep_norm_alpha = 1 def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, pos_bias=None ): residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn, pos_bias = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, position_bias=pos_bias ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) if self.activation_name == "glu": x = self.fc1(x) else: x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn, pos_bias = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=need_weights, attn_mask=self_attn_mask, position_bias=pos_bias ) x = self.dropout1(x) x = residual * self.deep_norm_alpha + x x = self.self_attn_layer_norm(x) residual = x if self.activation_name == "glu": x = self.fc1(x) else: x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual * self.deep_norm_alpha + x x = self.final_layer_norm(x) return x, attn, pos_bias class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, has_relative_attention_bias=False, num_buckets=32, max_distance=128, gru_rel_pos=False, rescale_init=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = nn.Dropout(dropout) self.has_relative_attention_bias = has_relative_attention_bias self.num_buckets = num_buckets self.max_distance = max_distance if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) self.head_dim = embed_dim // num_heads self.q_head_dim = self.head_dim self.k_head_dim = self.head_dim assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) k_bias = True if rescale_init: k_bias = False k_embed_dim = embed_dim q_embed_dim = embed_dim self.k_proj = quant_noise( nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.gru_rel_pos = gru_rel_pos if self.gru_rel_pos: self.grep_linear = nn.Linear(self.q_head_dim, 8) self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1)) self.reset_parameters() def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) if self.has_relative_attention_bias: nn.init.xavier_normal_(self.relative_attention_bias.weight) def _relative_positions_bucket(self, relative_positions, bidirectional=True): num_buckets = self.num_buckets max_distance = self.max_distance relative_buckets = 0 if bidirectional: num_buckets = num_buckets // 2 relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets relative_positions = torch.abs(relative_positions) else: relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) max_exact = num_buckets // 2 is_small = relative_positions < max_exact relative_postion_if_large = max_exact + ( torch.log(relative_positions.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) return relative_buckets def compute_bias(self, query_length, key_length): context_position = torch.arange(query_length, dtype=torch.long)[:, None] memory_position = torch.arange(key_length, dtype=torch.long)[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_positions_bucket( relative_position, bidirectional=True ) relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias(relative_position_bucket) values = values.permute([2, 0, 1]) return values def forward( self, query, key: Optional[torch.Tensor], value: Optional[torch.Tensor], key_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[torch.Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[torch.Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, position_bias: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if self.has_relative_attention_bias and position_bias is None: position_bias = self.compute_bias(tgt_len, src_len) position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling alpha = 32 q *= 1 / alpha if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.q_head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.k_head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[torch.Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = (attn_weights - attn_weights.max(dim=-1, keepdim=True)[0]) * alpha attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v, position_bias if position_bias is not None: attn_mask_rel_pos = position_bias if self.gru_rel_pos == 1: query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) * alpha / self.scaling _B, _H, _L, __ = query_layer.size() gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, tgt_len, 1) * position_bias attn_mask_rel_pos = attn_mask_rel_pos.view(attn_weights.size()) attn_weights = attn_weights + attn_mask_rel_pos attn_weights_float = F.softmax( attn_weights, dim=-1 ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[torch.Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights, position_bias @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[torch.Tensor], prev_key_padding_mask: Optional[torch.Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[torch.Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[torch.Tensor]]]] ) -> Dict[str, Optional[torch.Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[torch.Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]], buffer: Dict[str, Optional[torch.Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def init_bert_params(module): """ Initialize the weights specific to the BERT Model. This overrides the default initializations depending on the specified arguments. 1. If normal_init_linear_weights is set then weights of linear layer will be initialized using the normal distribution and bais will be set to the specified value. 2. If normal_init_embed_weights is set then weights of embedding layer will be initialized using the normal distribution. 3. If normal_init_proj_weights is set then weights of in_project_weight for MultiHeadAttention initialized using the normal distribution (to be validated). """ def normal_(data): # with FSDP, module params will be on CUDA, so we cast them back to CPU # so that the RNG is consistent with and without FSDP data.copy_( data.cpu().normal_(mean=0.0, std=0.02).to(data.device) ) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): normal_(module.q_proj.weight.data) normal_(module.k_proj.weight.data) normal_(module.v_proj.weight.data) class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None class SamePad(nn.Module): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() self.act = torch.nn.Sigmoid() def forward(self, x): return x * self.act(x) class GLU_Linear(nn.Module): def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): super(GLU_Linear, self).__init__() self.glu_type = glu_type self.output_dim = output_dim if glu_type == "sigmoid": self.glu_act = torch.nn.Sigmoid() elif glu_type == "swish": self.glu_act = Swish() elif glu_type == "relu": self.glu_act = torch.nn.ReLU() elif glu_type == "gelu": self.glu_act = torch.nn.GELU() if bias_in_glu: self.linear = nn.Linear(input_dim, output_dim * 2, True) else: self.linear = nn.Linear(input_dim, output_dim * 2, False) def forward(self, x): # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case x = self.linear(x) if self.glu_type == "bilinear": x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) else: x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) return x def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def gelu(x: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(x.float()).type_as(x) def get_activation_fn(activation: str): """Returns the activation function corresponding to `activation`""" if activation == "relu": return F.relu elif activation == "gelu": return gelu elif activation == "gelu_fast": warnings.warn( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x elif activation == "glu": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( torch.bool ) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module # Window Level Q Former class BertEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) ) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) self.config = config def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): if input_ids is not None: seq_length = input_ids.size()[1] else: seq_length = 0 if position_ids is None: position_ids = self.position_ids[ :, past_key_values_length : seq_length + past_key_values_length ].clone() if input_ids is not None: embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if query_embeds is not None: embeddings = torch.cat((query_embeds, embeddings), dim=1) else: embeddings = query_embeds embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, is_cross_attention): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr( config, "embedding_size" ): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_width, self.all_head_size) self.value = nn.Linear(config.encoder_width, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size ) self.save_attention = False def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) mixed_query_layer = self.query(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): seq_length = hidden_states.size()[1] position_ids_l = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(-1, 1) position_ids_r = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding( distance + self.max_position_embeddings - 1 ) positional_embedding = positional_embedding.to( dtype=query_layer.dtype ) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) relative_position_scores_key = torch.einsum( "bhrd,lrd->bhlr", key_layer, positional_embedding ) attention_scores = ( attention_scores + relative_position_scores_query + relative_position_scores_key ) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) if is_cross_attention and self.save_attention: self.save_attention_map(attention_probs) attention_probs.register_hook(self.save_attn_gradients) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( (context_layer, attention_probs) if output_attentions else (context_layer,) ) outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.self = BertSelfAttention(config, is_cross_attention) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads, ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = ( self.self.attention_head_size * self.self.num_attention_heads ) self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[ 1: ] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config, layer_num): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.layer_num = layer_num if ( self.config.add_cross_attention and layer_num % self.config.cross_attention_freq == 0 ): self.crossattention = BertAttention( config, is_cross_attention=self.config.add_cross_attention ) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate = BertIntermediate(config) self.output = BertOutput(config) self.intermediate_query = BertIntermediate(config) self.output_query = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = ( past_key_value[:2] if past_key_value is not None else None ) self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: assert ( encoder_hidden_states is not None ), "encoder_hidden_states must be given for cross-attention layers" cross_attention_outputs = self.crossattention( query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) query_attention_output = cross_attention_outputs[0] outputs = ( outputs + cross_attention_outputs[1:-1] ) # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query(self, attention_output): intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [BertLayer(config, i) for i in range(config.num_hidden_layers)] ) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = ( () if output_attentions and self.config.add_cross_attention else None ) next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module( *inputs, past_key_value, output_attentions, query_length ) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=False): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, is_decoder: bool, has_query: bool = False, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] ) # add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] if has_query: # UniLM style attention mask causal_mask = torch.cat( [ torch.zeros( (batch_size, prefix_seq_len, seq_length), device=device, dtype=causal_mask.dtype, ), causal_mask, ], axis=1, ) causal_mask = torch.cat( [ torch.ones( (batch_size, causal_mask.shape[1], prefix_seq_len), device=device, dtype=causal_mask.dtype, ), causal_mask, ], axis=-1, ) extended_attention_mask = ( causal_mask[:, None, :, :] * attention_mask[:, None, None, :] ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=self.dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is None: assert ( query_embeds is not None ), "You have to specify query_embeds when input_ids is None" # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 ) query_length = query_embeds.shape[1] if query_embeds is not None else 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, query_embeds=query_embeds, past_key_values_length=past_key_values_length, ) input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if is_decoder: extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_ids.shape, device, is_decoder, has_query=(query_embeds is not None), ) else: extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_shape, device, is_decoder ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ 0 ].size() else: ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [ self.invert_attention_mask(mask) for mask in encoder_attention_mask ] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length, ) sequence_output = encoder_outputs[0] pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=True, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, reduction="mean", ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') >>> config = BertConfig.from_pretrained("bert-base-cased") >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if labels is not None: use_cache = False if past_key_values is not None: query_embeds = None outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, query_embeds=query_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, ) sequence_output = outputs[0] if query_embeds is not None: sequence_output = outputs[0][:, query_embeds.shape[1] :, :] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :].contiguous() lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = nn.CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) lm_loss = loss_fct( shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) if reduction == "none": lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) query_mask = input_ids.new_ones(query_embeds.shape[:-1]) attention_mask = torch.cat([query_mask, attention_mask], dim=-1) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "query_embeds": query_embeds, "attention_mask": attention_mask, "past_key_values": past, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past ), ) return reordered_past class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=False, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, query_embeds=query_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, ) if query_embeds is not None: sequence_output = outputs[0][:, query_embeds.shape[1] :, :] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores masked_lm_loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ( ((masked_lm_loss,) + output) if masked_lm_loss is not None else output ) return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )