--- library_name: transformers license: apache-2.0 base_model: PrimeIntellect/INTELLECT-1-Instruct tags: - axolotl - generated_from_trainer datasets: - neginashz/rationale-llama-chat-dataset model-index: - name: star-sft-intellect-instruct-3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: PrimeIntellect/INTELLECT-1-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer gpu_memory_limit: load_in_8bit: load_in_4bit: strict: false chat_template: llama3 datasets: - path: neginashz/rationale-llama-chat-dataset type: chat_template field_messages: messages #message_field_role: role #message_field_content: content dataset_prepared_path: val_set_size: 0.1 output_dir: ./star-sft-intellect-3 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: star-sft-intellect-instruct-3 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: 16 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: fsdp: fsdp_config: special_tokens: hub_model_id: neginashz/star-sft-intellect-instruct-3 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# star-sft-intellect-instruct-3 This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5519 | 0.0686 | 7 | 0.4405 | | 0.4453 | 0.1373 | 14 | 0.4080 | | 0.4511 | 0.2059 | 21 | 0.4004 | | 0.4243 | 0.2745 | 28 | 0.3979 | | 0.405 | 0.3431 | 35 | 0.3893 | | 0.4134 | 0.4118 | 42 | 0.3832 | | 0.4028 | 0.4804 | 49 | 0.3753 | | 0.3801 | 0.5490 | 56 | 0.3682 | | 0.3878 | 0.6176 | 63 | 0.3593 | | 0.4085 | 0.6863 | 70 | 0.3523 | | 0.3649 | 0.7549 | 77 | 0.3460 | | 0.3378 | 0.8235 | 84 | 0.3416 | | 0.377 | 0.8922 | 91 | 0.3390 | | 0.3542 | 0.9608 | 98 | 0.3380 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0