File size: 2,039 Bytes
37b27fc
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e243d
 
 
37b27fc
 
 
 
 
e9cf326
 
37b27fc
 
e9cf326
 
 
 
37b27fc
 
 
 
 
 
 
 
e9cf326
37b27fc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilbert_classifier_newsgroup
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# distilbert_classifier_newsgroup

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [20 Newsgroups](http://qwone.com/~jason/20Newsgroups/) data set that is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups.
It achieves the following results on the evaluation set: 
loss: 0.5660 - accuracy: 0.8371



## Training and evaluation data

- The training set contained 10182 rows with features - text and label.
- The evaluation set contained 7532 rows with features - text and label.

## Training procedure
- Setup the model checkpoint as [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased)
- Intialize the starting weights with the model checkpoint and give it the number of labels - i.e., 20 in this case.
- Will be training for 3 epochs
- Using a batch size of 16
### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

- Results on the evaluation set: loss: 0.5660 - accuracy: 0.8371

### Framework versions

- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3