--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_classifier_newsgroup results: [] --- # distilbert_classifier_newsgroup This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [20 Newsgroups](http://qwone.com/~jason/20Newsgroups/) data set that is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. It achieves the following results on the evaluation set: loss: 0.5660 - accuracy: 0.8371 ## Training and evaluation data - The training set contained 10182 rows with features - text and label. - The evaluation set contained 7532 rows with features - text and label. ## Training procedure - Setup the model checkpoint as [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) - Intialize the starting weights with the model checkpoint and give it the number of labels - i.e., 20 in this case. - Will be training for 3 epochs - Using a batch size of 16 ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results - Results on the evaluation set: loss: 0.5660 - accuracy: 0.8371 ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3