--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - generated_from_trainer model-index: - name: pgd_llama3_16bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02 results: [] --- # pgd_llama3_16bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2412 | 0.9867 | 37 | 1.0043 | | 0.9676 | 2.0 | 75 | 0.9525 | | 0.9473 | 2.9867 | 112 | 0.9120 | | 0.8898 | 4.0 | 150 | 0.9089 | | 0.9026 | 4.9867 | 187 | 0.9108 | | 0.8704 | 6.0 | 225 | 0.9143 | | 0.8839 | 6.9867 | 262 | 0.9186 | | 0.8483 | 8.0 | 300 | 0.9278 | | 0.8532 | 8.9867 | 337 | 0.9429 | | 0.8142 | 9.8667 | 370 | 0.9498 | ### Framework versions - PEFT 0.12.0 - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1