Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.05 +/- 75.64
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3cc1f2820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3cc1f28b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3cc1f2940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3cc1f29d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe3cc1f2a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3cc1f2af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3cc1f2b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3cc1f2c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3cc1f2ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3cc1f2d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3cc1f2dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3cc1ecc30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670598696527170909, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAKZFoz1c0+w+2EgXvuyyz765jb86Yu6IvQAAAAAAAAAAzejdO65Rs7q7kJ24TfMlttxcU7kWabY3AAAAAAAAAAD6rSa+w0/XPhBTeT5jtrC+JngkPdYWobsAAAAAAAAAAOAcG7471YE/8a6Kvo8sFr9OS4G+whM5vgAAAAAAAAAAGqs/PZUBVz5WqNi9d0CSvq80Hr17V6c8AAAAAAAAAAAAyNi9UCG6PxU03768IFa+yn1nu0IYzL0AAAAAAAAAAACQObzD8XO6Ih4CNnzLATEPlFq6ZeQjtQAAgD8AAIA/zbizvHUXbT7W0P09e8SDvt+QNj3rWwI9AAAAAAAAAABNVwi9AKuwPwK5Jr+x9aa+ccmqPBBz/jsAAAAAAAAAAOZ1br0E/h4+m53tPXanhr5fwpw81XG6ugAAAAAAAAAA+u8Zvrq/vz7lOTk+LeO0vnFjyrzSwKI9AAAAAAAAAAAGGhY+sHv5Pq4R1r1FYcW+h5U+PURJwL0AAAAAAAAAAGasdzwku1w+guKnPPVoqL7EYD08vF46vQAAAAAAAAAAJkfFPcuRXD+cSCY9TG8Bvyukrz2el+Q8AAAAAAAAAAAzWA69DiM0P+8tt7qG7/e+cM90vM67qTwAAAAAAAAAAGaG9DopYCC6CXOgthErLLBhdd272T69NQAAgD8AAIA/Jui/vXcDiD7Gvg4+sm6avr6hYz1XpUG9AAAAAAAAAABmNOa9VO42P+K+Dr2Kj9y+OjmWvaOxpTwAAAAAAAAAAOa4Hb18CAE9XtDmPb0gX75ld6c9eOb2PAAAAAAAAAAAgPpfPdcNGT7YW0G+TlqBvg58uL1a4pq8AAAAAAAAAADKG2S+e7QYP8OUlzyrh8S+kZFiviUxET4AAAAAAAAAALrXNT616Mk+i1lovpB+rb45sMw8posfvQAAAAAAAAAA2KatvgaTfT9fOaK+UBMUv48Lz766uSG9AAAAAAAAAAAz0zS7tFuuP015AL2bhK6+48GdOy1HhT0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgT0mUtrscECUhpRSlIwBbJRL54wBdJRHQKM4SBeXzDp1fZQoaAZoCWgPQwjk9ssnq11yQJSGlFKUaBVLwmgWR0CjOFdV/+bWdX2UKGgGaAloD0MIzhySWij+bECUhpRSlGgVS9doFkdAozicuL74z3V9lChoBmgJaA9DCMZOeAmOdXNAlIaUUpRoFUvSaBZHQKM4rMLWqcV1fZQoaAZoCWgPQwg1CklmdRNvQJSGlFKUaBVL1WgWR0CjOMrRjSXudX2UKGgGaAloD0MI1jpxOd4kcUCUhpRSlGgVS+toFkdAozkA8uBczXV9lChoBmgJaA9DCGQGKuPfPW9AlIaUUpRoFUvZaBZHQKM5NNQCSzR1fZQoaAZoCWgPQwiwOJz5VS9zQJSGlFKUaBVLzWgWR0CjOVaX8fmtdX2UKGgGaAloD0MIIenTKnoCc0CUhpRSlGgVS8doFkdAozlg2sJY1nV9lChoBmgJaA9DCHv18dC3/XNAlIaUUpRoFUvFaBZHQKM5uDW9US91fZQoaAZoCWgPQwgOar+1UxBwQJSGlFKUaBVL1WgWR0CjOcmM4tHydX2UKGgGaAloD0MICMcse9LlckCUhpRSlGgVS8poFkdAoznG6ClJpXV9lChoBmgJaA9DCOENaVTgdXFAlIaUUpRoFUvCaBZHQKM51ot+TeR1fZQoaAZoCWgPQwglICbhQuxxQJSGlFKUaBVL0GgWR0CjOf2ki2UjdX2UKGgGaAloD0MIByXMtD1XcUCUhpRSlGgVS81oFkdAozo2bAk9lnV9lChoBmgJaA9DCLaCpiWWlnFAlIaUUpRoFUvwaBZHQKM6P6rvLHN1fZQoaAZoCWgPQwimQ6fnnThzQJSGlFKUaBVL6mgWR0CjOkE690zTdX2UKGgGaAloD0MIgsR29wB9cUCUhpRSlGgVS/BoFkdAozpeT7l7t3V9lChoBmgJaA9DCPBRf73CpHBAlIaUUpRoFUvaaBZHQKM6Zp0OmSB1fZQoaAZoCWgPQwjsM2d9CsdwQJSGlFKUaBVL3mgWR0CjOp1qnFYMdX2UKGgGaAloD0MIsvZ3tkfZcUCUhpRSlGgVS85oFkdAozq/vF3pwHV9lChoBmgJaA9DCOIi93T1/nFAlIaUUpRoFUv9aBZHQKM6zd69kBl1fZQoaAZoCWgPQwgfK/htCCBxQJSGlFKUaBVLy2gWR0CjOwRWkrPMdX2UKGgGaAloD0MIdQZGXtbVb0CUhpRSlGgVS8xoFkdAozs71AZ88nV9lChoBmgJaA9DCIp3gCctI3JAlIaUUpRoFUvZaBZHQKM7X9FWn0l1fZQoaAZoCWgPQwgHKXgKeThzQJSGlFKUaBVLumgWR0CjO6Tr3TNMdX2UKGgGaAloD0MIlWWIY11YcUCUhpRSlGgVS89oFkdAozu8glnh9HV9lChoBmgJaA9DCFN5O8KpJXNAlIaUUpRoFUv4aBZHQKM7zxMFlkJ1fZQoaAZoCWgPQwhfCaTE7qBxQJSGlFKUaBVL4mgWR0CjO9RdIGyHdX2UKGgGaAloD0MIvHSTGIT6cECUhpRSlGgVS+RoFkdAozvraoMrmXV9lChoBmgJaA9DCH2utmI/MHFAlIaUUpRoFUvXaBZHQKM8baA4GUx1fZQoaAZoCWgPQwitaklHeXZxQJSGlFKUaBVL5WgWR0CjPIEe6qbSdX2UKGgGaAloD0MIQj9TrxtTc0CUhpRSlGgVS8hoFkdAozyU5GSZB3V9lChoBmgJaA9DCBQGZRpNlHBAlIaUUpRoFUvjaBZHQKM8pMaCL/F1fZQoaAZoCWgPQwgmcOtuHsxwQJSGlFKUaBVL1WgWR0CjPNBB7eEadX2UKGgGaAloD0MIRMTNqSQfckCUhpRSlGgVS+loFkdAoz0hxJd0JXV9lChoBmgJaA9DCHrE6LlFAHJAlIaUUpRoFUvFaBZHQKM9M1YQrc11fZQoaAZoCWgPQwhHdxA7E8lwQJSGlFKUaBVLzWgWR0CjPTOBczIndX2UKGgGaAloD0MIo6zfTAyjcECUhpRSlGgVS+JoFkdAoz0+PLgXM3V9lChoBmgJaA9DCEC/798833JAlIaUUpRoFUvvaBZHQKM9RoN/e+F1fZQoaAZoCWgPQwjv5qkOeZlxQJSGlFKUaBVLxWgWR0CjPXcrZrYXdX2UKGgGaAloD0MIHVn5ZXA1c0CUhpRSlGgVS9xoFkdAoz2L7Q9idHV9lChoBmgJaA9DCPnAjv8C0HBAlIaUUpRoFUvmaBZHQKM9jfPX05F1fZQoaAZoCWgPQwj/69y0mXtxQJSGlFKUaBVL7mgWR0CjPZ+K8+RpdX2UKGgGaAloD0MI1jpxOd6Vc0CUhpRSlGgVS8loFkdAoz2o0dilSHV9lChoBmgJaA9DCADirl5FgnFAlIaUUpRoFUvYaBZHQKM96Xj2i+N1fZQoaAZoCWgPQwjs3orERMVwQJSGlFKUaBVLzGgWR0CjPfk1/DtPdX2UKGgGaAloD0MIEhPU8K1MbkCUhpRSlGgVS9FoFkdAoz4+9xp+MXV9lChoBmgJaA9DCEg2V82zxXBAlIaUUpRoFUvAaBZHQKM+bGus90R1fZQoaAZoCWgPQwg5Qgby7K5yQJSGlFKUaBVL12gWR0CjPnyr5qM4dX2UKGgGaAloD0MIuMzpsthdc0CUhpRSlGgVS8doFkdAoz6sB2fTTnV9lChoBmgJaA9DCJdUbTcBXXJAlIaUUpRoFUvVaBZHQKM+zenAIpp1fZQoaAZoCWgPQwjO+/84YTZvQJSGlFKUaBVL02gWR0CjPtyi/O+qdX2UKGgGaAloD0MIijve5LdccECUhpRSlGgVS+RoFkdAoz8vAZbY9XV9lChoBmgJaA9DCGmQgqeQZHBAlIaUUpRoFUvDaBZHQKM/Qso2GZh1fZQoaAZoCWgPQwjpRIKp5i9xQJSGlFKUaBVLyWgWR0CjP2skyDZldX2UKGgGaAloD0MI2SWqt8ZBcUCUhpRSlGgVS+FoFkdAoz+hS3solXV9lChoBmgJaA9DCPonuFjR93JAlIaUUpRoFUviaBZHQKM/3x2jfvZ1fZQoaAZoCWgPQwhan3JMFl5xQJSGlFKUaBVLw2gWR0CjQEfWDpTudX2UKGgGaAloD0MIJqyNsdNKckCUhpRSlGgVS/JoFkdAo0BVjCpFTnV9lChoBmgJaA9DCCe+2lEcpnBAlIaUUpRoFUvcaBZHQKNAYqiGnGd1fZQoaAZoCWgPQwgFUfcBSOxwQJSGlFKUaBVL4mgWR0CjQGq/M4cWdX2UKGgGaAloD0MI6QyMvKxyc0CUhpRSlGgVS8VoFkdAo0Bvt4RmLHV9lChoBmgJaA9DCGlWtg85cXBAlIaUUpRoFUvdaBZHQKNAeLuQZGd1fZQoaAZoCWgPQwjCiejXlqZyQJSGlFKUaBVLwmgWR0CjQIWa2F37dX2UKGgGaAloD0MIG0rtRTSmb0CUhpRSlGgVS9FoFkdAo0CdY6nzhHV9lChoBmgJaA9DCLcNoyC4unFAlIaUUpRoFUvtaBZHQKNAup2ll9V1fZQoaAZoCWgPQwhtjnObcN5uQJSGlFKUaBVL1WgWR0CjQMAmAskIdX2UKGgGaAloD0MI8Gq5M9PFcECUhpRSlGgVS9doFkdAo0EPv+fh/HV9lChoBmgJaA9DCLHEA8pmY3FAlIaUUpRoFUu+aBZHQKNBS+zMRpV1fZQoaAZoCWgPQwgoucMm8v1wQJSGlFKUaBVL0WgWR0CjQVdZq20BdX2UKGgGaAloD0MIGmoUkgx7cECUhpRSlGgVS9doFkdAo0GaA+Y+jnV9lChoBmgJaA9DCL8Qct7/znJAlIaUUpRoFUv4aBZHQKNBnnlnyup1fZQoaAZoCWgPQwis5jkinzZyQJSGlFKUaBVL0GgWR0CjQcbIcR16dX2UKGgGaAloD0MItRX7y27fcECUhpRSlGgVS8xoFkdAo0HrDVH4GnV9lChoBmgJaA9DCBYXR+WmBW9AlIaUUpRoFUvTaBZHQKNB9URWcSZ1fZQoaAZoCWgPQwhrJ0pCInxxQJSGlFKUaBVL0WgWR0CjQmiI+GGmdX2UKGgGaAloD0MIHyv4bQjSbkCUhpRSlGgVS8doFkdAo0Js9wFTvXV9lChoBmgJaA9DCHl5OldUMnJAlIaUUpRoFUvXaBZHQKNCbA/s3Q51fZQoaAZoCWgPQwhubHakuupxQJSGlFKUaBVL1mgWR0CjQyRq46OpdX2UKGgGaAloD0MIgy9Mpsp0cECUhpRSlGgVS+1oFkdAo0NElLOAy3V9lChoBmgJaA9DCGAeMuUDoXNAlIaUUpRoFUvJaBZHQKNDkMspXp51fZQoaAZoCWgPQwhjDKzjuNFxQJSGlFKUaBVLzGgWR0CjQ496C17ZdX2UKGgGaAloD0MIsMka9VBUcECUhpRSlGgVS9loFkdAo0OpmNBF/nV9lChoBmgJaA9DCHb8FwiCZ21AlIaUUpRoFUvVaBZHQKNDsIAOrhl1fZQoaAZoCWgPQwiQSrGj8VRvQJSGlFKUaBVL12gWR0CjQ7XL/0dzdX2UKGgGaAloD0MIPlxy3Gl2cUCUhpRSlGgVS+JoFkdAo0PaPwNLDnV9lChoBmgJaA9DCAa69gW0nHJAlIaUUpRoFUvKaBZHQKND2W56MR91fZQoaAZoCWgPQwiyLQPOUp1xQJSGlFKUaBVLzWgWR0CjQ+C0WuYAdX2UKGgGaAloD0MIS65i8Zv6b0CUhpRSlGgVS9loFkdAo0PuknCwbHV9lChoBmgJaA9DCMzuycMC/nFAlIaUUpRoFUvIaBZHQKNELITXarZ1fZQoaAZoCWgPQwjK+WLvhc1yQJSGlFKUaBVNAAFoFkdAo0Q1VWCEpXV9lChoBmgJaA9DCFNdwMtMUHBAlIaUUpRoFUvRaBZHQKNEg+Ofdyl1fZQoaAZoCWgPQwjLvFXXYfVyQJSGlFKUaBVLwGgWR0CjRJKbrkbQdX2UKGgGaAloD0MIYp0q33OzckCUhpRSlGgVS8loFkdAo0S2YjSofnV9lChoBmgJaA9DCPrvwWtXCnNAlIaUUpRoFUvdaBZHQKNEvFH8TBZ1fZQoaAZoCWgPQwgWvVMB93pwQJSGlFKUaBVLzWgWR0CjRQeRgZ0kdX2UKGgGaAloD0MI2h8oty3Ec0CUhpRSlGgVS+RoFkdAo0U53s5XEXV9lChoBmgJaA9DCIv9ZfckV3JAlIaUUpRoFUvdaBZHQKNFTD3M6il1fZQoaAZoCWgPQwh7vma5rFdxQJSGlFKUaBVLy2gWR0CjRXo8p1A8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 410, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e8535c280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e8535c310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e8535c3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e8535c430>", "_build": "<function ActorCriticPolicy._build at 0x7f0e8535c4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0e8535c550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e8535c5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0e8535c670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e8535c700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e8535c790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e8535c820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0e8535d0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670689921505697815, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLAksTQxx8AIgAFAB9AWQBfQJ8AXwCawVyGHwBUwB8AlMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCURz8zqSowVTJhhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUjAZyZXR2YWyUjAZtaW5fbHKUh5SMHzxpcHl0aG9uLWlucHV0LTExLWI4NzI3NDVlNjczYT6UjARmdW5jlEsLQwoABwgBBAEIAQQBlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgYaBCMDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP3R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLAksTQxx8AIgAFAB9AWQBfQJ8AXwCawVyGHwBUwB8AlMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCURz8zqSowVTJhhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUjAZyZXR2YWyUjAZtaW5fbHKUh5SMHzxpcHl0aG9uLWlucHV0LTExLWI4NzI3NDVlNjczYT6UjARmdW5jlEsLQwoABwgBBAEIAQQBlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgYaBCMDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP3R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYLpb17nPG6AcYcPpO+PL4tMmW8ykeJPQAAgD8AAAAAjaiGva4fkbp1TBq4jfYSs45gGztx2jI3AACAPwAAgD9AodQ9bauvPyIhvD7z+tu+q+4gPksNOz0AAAAAAAAAAIBXdr3v7xY/sJZDvWuNUL90XOu9BUMNPQAAAAAAAAAAAERAPZAtqD/qaw0/6q4hv6ZwL7s+ygc+AAAAAAAAAAAaBSa96fsnvOY7Sj6CVdW8FvepvNXdbr4AAIA/AACAP0D8vT1fDBQ+CH1PvjpZ175KeWs84HkQvQAAAAAAAAAAzf8kva4JpLoBRJgz3Bt4LyQAzzoSPK+zAACAPwAAgD9mJww9MzG9PxsdoT5xTQ0+//8evVcskL0AAAAAAAAAAGaCWD6/Hxg/dpVMvgav475oLII+/ow/vgAAAAAAAAAA4FwaPms5nD9CJhQ/zwgov/RpSD5o0eY9AAAAAAAAAAAzqX09XHABO43dLb7UC7K92nsBvRrWHj8AAIA/AAAAAGYUcD2HtmU+YtCZvYyAIr/zQQ8+0vA1OwAAAAAAAAAAmmSFvSU4sj+WHgC/0DBcviWM97q1WjC+AAAAAAAAAACmwSY+gnWLP4I6xT4P706/VV9sPmyDrT0AAAAAAAAAAOalPz2WZoU/P360PQZmgb8Ez2o8M9jougAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB9MwfIQ+cECUhpRSlIwBbJRLkowBdJRHQKYgV7655JN1fZQoaAZoCWgPQwg8wJMW7lVyQJSGlFKUaBVLh2gWR0CmIGqjBVMmdX2UKGgGaAloD0MIgPPixJd2cUCUhpRSlGgVS5loFkdApiCMynDR+nV9lChoBmgJaA9DCCeiX1v//HBAlIaUUpRoFUusaBZHQKYguOskpqh1fZQoaAZoCWgPQwgyrrg4qktwQJSGlFKUaBVLqWgWR0CmOB5u63AmdX2UKGgGaAloD0MIlDMUd7xucECUhpRSlGgVS4poFkdApjguOU+s5nV9lChoBmgJaA9DCJRnXg67lnBAlIaUUpRoFUusaBZHQKY4LcQiA2B1fZQoaAZoCWgPQwibcoV3OXtxQJSGlFKUaBVLpmgWR0CmOHdsSCe3dX2UKGgGaAloD0MI9kArMOR2ckCUhpRSlGgVS6RoFkdApjiBs2vSt3V9lChoBmgJaA9DCOmdCrgn+XBAlIaUUpRoFUuCaBZHQKY4qZ/CqId1fZQoaAZoCWgPQwgd5ssLcHpyQJSGlFKUaBVLfmgWR0CmOLDd56dEdX2UKGgGaAloD0MIu9IyUu9sckCUhpRSlGgVS9JoFkdApji66z3RHHV9lChoBmgJaA9DCAggtYkTYnFAlIaUUpRoFUulaBZHQKY428brC3x1fZQoaAZoCWgPQwiVn1T79HNwQJSGlFKUaBVLn2gWR0CmOOitaIN3dX2UKGgGaAloD0MIEtkHWdbfcUCUhpRSlGgVS7BoFkdApjkADklu33V9lChoBmgJaA9DCNB+pIiMCHNAlIaUUpRoFUu6aBZHQKY5B+jM3ZR1fZQoaAZoCWgPQwh5yf/k7y9vQJSGlFKUaBVLlGgWR0CmOTYRdyDJdX2UKGgGaAloD0MIg6Pk1TlfcUCUhpRSlGgVS8NoFkdApjlvFirksHV9lChoBmgJaA9DCOEH51MHLHNAlIaUUpRoFUuXaBZHQKY5fMzMzM11fZQoaAZoCWgPQwgl58QeWp1wQJSGlFKUaBVLxGgWR0CmOYUeU6gedX2UKGgGaAloD0MIkdWtnpOXc0CUhpRSlGgVS6RoFkdApjmprcj7h3V9lChoBmgJaA9DCGQCfo2kG3FAlIaUUpRoFUu2aBZHQKY5sJlar3l1fZQoaAZoCWgPQwgAAtaq3WRxQJSGlFKUaBVLq2gWR0CmObqqfe1sdX2UKGgGaAloD0MI3QvMCkX/cECUhpRSlGgVS6ZoFkdApjn/SMLncXV9lChoBmgJaA9DCO8dNSaEQHJAlIaUUpRoFUuVaBZHQKY6D1A7gbZ1fZQoaAZoCWgPQwinBprPuZdxQJSGlFKUaBVLymgWR0CmOk60QbuMdX2UKGgGaAloD0MIpkboZ+orc0CUhpRSlGgVS6RoFkdApjpaZc9nsnV9lChoBmgJaA9DCJ+Qnbex0UZAlIaUUpRoFUtkaBZHQKY6ZsLv1Dl1fZQoaAZoCWgPQwjnGfuSzQFyQJSGlFKUaBVLpmgWR0CmOmvXkHUudX2UKGgGaAloD0MII7w9CIHWcUCUhpRSlGgVS6hoFkdApjqRlWfbsXV9lChoBmgJaA9DCKMeotGdxHFAlIaUUpRoFUuraBZHQKY6kNCqp991fZQoaAZoCWgPQwgqVg3CXIlyQJSGlFKUaBVL1WgWR0CmOqEHt4RmdX2UKGgGaAloD0MIp3hcVMu6c0CUhpRSlGgVS55oFkdApjqpQm/nGXV9lChoBmgJaA9DCJqw/WTMc3NAlIaUUpRoFUvxaBZHQKY61LpRoAZ1fZQoaAZoCWgPQwjueJPf4jdxQJSGlFKUaBVLi2gWR0CmOvd1MdtEdX2UKGgGaAloD0MInKc65OZycUCUhpRSlGgVS69oFkdApjr/Mr3CbnV9lChoBmgJaA9DCH/cfvlk9XNAlIaUUpRoFUusaBZHQKY7DWT5ftx1fZQoaAZoCWgPQwhiEi7k0R5xQJSGlFKUaBVLiWgWR0CmO07Rv3rVdX2UKGgGaAloD0MIDtlAutjcc0CUhpRSlGgVS6NoFkdApjt+6ErXlXV9lChoBmgJaA9DCJAvoYLDPHJAlIaUUpRoFUvLaBZHQKY7icqe9SN1fZQoaAZoCWgPQwjEsMOYtNBxQJSGlFKUaBVLhmgWR0CmO8pMg2ZRdX2UKGgGaAloD0MIbqKW5hYHckCUhpRSlGgVS41oFkdApjvdGd7OV3V9lChoBmgJaA9DCJBlwcTfqXJAlIaUUpRoFUvvaBZHQKY73EAHVwx1fZQoaAZoCWgPQwjxnC0gtFhyQJSGlFKUaBVLxWgWR0CmPCPUjLSvdX2UKGgGaAloD0MIDCO9qN19ckCUhpRSlGgVS71oFkdApjwutMfzSXV9lChoBmgJaA9DCKRS7GgcZXJAlIaUUpRoFUvHaBZHQKY8NVbRne11fZQoaAZoCWgPQwg0EMtmTsBxQJSGlFKUaBVLq2gWR0CmPDqp97WvdX2UKGgGaAloD0MIwtzu5f5Oc0CUhpRSlGgVS45oFkdApjxWHerMknV9lChoBmgJaA9DCIKQLGBCYHJAlIaUUpRoFUuhaBZHQKY8Xq7Ackt1fZQoaAZoCWgPQwithVlop79yQJSGlFKUaBVL2mgWR0CmPG4nv2GqdX2UKGgGaAloD0MIONkG7sDXcECUhpRSlGgVS6VoFkdApjyQddVvM3V9lChoBmgJaA9DCAD9vn8zM3FAlIaUUpRoFUulaBZHQKY8nfyf+S91fZQoaAZoCWgPQwjkLOxpx2pyQJSGlFKUaBVLjWgWR0CmPKPSMLncdX2UKGgGaAloD0MIgv+tZAescUCUhpRSlGgVS4ZoFkdApjzGrGR3eXV9lChoBmgJaA9DCKhtwygIoXBAlIaUUpRoFUuaaBZHQKY86MrEtNB1fZQoaAZoCWgPQwgDs0KRLulyQJSGlFKUaBVNCQFoFkdApj0UAeaKDXV9lChoBmgJaA9DCA1slWCxsXBAlIaUUpRoFUuvaBZHQKY9e2jO9nN1fZQoaAZoCWgPQwg4aK8+niFxQJSGlFKUaBVLlmgWR0CmPY6IN3GGdX2UKGgGaAloD0MIKC1cVuGjcECUhpRSlGgVS4poFkdApj2iwdKdx3V9lChoBmgJaA9DCBZNZyeDWXBAlIaUUpRoFUulaBZHQKY9quTzNEB1fZQoaAZoCWgPQwiis8wilGhyQJSGlFKUaBVLw2gWR0CmPa9H+ZPVdX2UKGgGaAloD0MIvLN228WnckCUhpRSlGgVS9poFkdApj3Vx4ptrXV9lChoBmgJaA9DCHfWbrtQIXRAlIaUUpRoFUuraBZHQKY968lolD51fZQoaAZoCWgPQwgPuRlugFxyQJSGlFKUaBVLymgWR0CmPhcW0qpcdX2UKGgGaAloD0MIjPLMy2FCc0CUhpRSlGgVS6hoFkdApj4+R7qptXV9lChoBmgJaA9DCHeHFAMkb3JAlIaUUpRoFUuraBZHQKY+P4N7SiN1fZQoaAZoCWgPQwjb+uk/q+VxQJSGlFKUaBVL12gWR0CmPj8IAwPAdX2UKGgGaAloD0MIS633G61KckCUhpRSlGgVS4poFkdApj5ttTDO1XV9lChoBmgJaA9DCBdIUPwYnXFAlIaUUpRoFUvgaBZHQKY+hbNbC791fZQoaAZoCWgPQwh9PzVeOotyQJSGlFKUaBVL1WgWR0CmPpEeyRjjdX2UKGgGaAloD0MIh6bs9ENBckCUhpRSlGgVS79oFkdApj6YeHSF5HV9lChoBmgJaA9DCKX1twQgjXFAlIaUUpRoFUvCaBZHQKY+v7pFCsx1fZQoaAZoCWgPQwjM0k7NJeRxQJSGlFKUaBVLkmgWR0CmPtfb0voNdX2UKGgGaAloD0MIlKXW+40cckCUhpRSlGgVS45oFkdApj76jYZl4HV9lChoBmgJaA9DCPrUsUpp6nNAlIaUUpRoFUuoaBZHQKY/G8wpON51fZQoaAZoCWgPQwhCmUaTy6NwQJSGlFKUaBVLoGgWR0CmPxugxrSFdX2UKGgGaAloD0MIuaZAZucScUCUhpRSlGgVS7doFkdApj9aZc9nsnV9lChoBmgJaA9DCEgZcQEoknNAlIaUUpRoFUuiaBZHQKY/aHPeHi51fZQoaAZoCWgPQwiaeXJNgdVwQJSGlFKUaBVLnGgWR0CmP4CUPhAGdX2UKGgGaAloD0MIRWXDmsptckCUhpRSlGgVS7hoFkdApj+FTFVDKHV9lChoBmgJaA9DCJGBPLt8ez9AlIaUUpRoFUtXaBZHQKY/ipWmxdJ1fZQoaAZoCWgPQwjTZwdcV81wQJSGlFKUaBVLlGgWR0CmP5Dmr8zidX2UKGgGaAloD0MIzM8NTZkQcECUhpRSlGgVS5NoFkdApj+Pq5byH3V9lChoBmgJaA9DCCWzeodbFXFAlIaUUpRoFUuiaBZHQKY/rHtF8Xx1fZQoaAZoCWgPQwgibeNP1FRzQJSGlFKUaBVLmWgWR0CmP9yLIgeSdX2UKGgGaAloD0MIstXllEAKckCUhpRSlGgVS51oFkdApj/595QgtHV9lChoBmgJaA9DCFAaahTSK3JAlIaUUpRoFUuwaBZHQKZAHwOvt+l1fZQoaAZoCWgPQwhMF2L1ByByQJSGlFKUaBVLzGgWR0CmQDzLns9kdX2UKGgGaAloD0MIbw7Xas90c0CUhpRSlGgVS6JoFkdApkBLmuDBdnV9lChoBmgJaA9DCFkZjXxeNm9AlIaUUpRoFUucaBZHQKZAYJ6Y3Nt1fZQoaAZoCWgPQwjnps04TcdwQJSGlFKUaBVLtWgWR0CmQL7LEDQrdX2UKGgGaAloD0MIlsyxvOvCc0CUhpRSlGgVS8RoFkdApkDi48U21nV9lChoBmgJaA9DCEm9p3LaDnFAlIaUUpRoFUugaBZHQKZA8xgy/K11fZQoaAZoCWgPQwh4uB0a1rlwQJSGlFKUaBVLr2gWR0CmQPy44Ia+dX2UKGgGaAloD0MI/rW8cn1vckCUhpRSlGgVS8FoFkdApkEZJbt7bHV9lChoBmgJaA9DCPLqHANyJXRAlIaUUpRoFUuzaBZHQKZBMS+QEIR1fZQoaAZoCWgPQwgzpIrilU5yQJSGlFKUaBVLuGgWR0CmQTbiIciodX2UKGgGaAloD0MI0Lnb9VLycUCUhpRSlGgVS7VoFkdApkFWitaIN3V9lChoBmgJaA9DCP5+MVsy/nFAlIaUUpRoFUvFaBZHQKZBWgA6uGN1fZQoaAZoCWgPQwjpJjEI7OtyQJSGlFKUaBVLzWgWR0CmQWRgRbr1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81c68d8bb1cd2a793e3817a102dd0f7ab4f458a695b889364db1cc02b58cf06c
|
3 |
+
size 148362
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,26 +41,29 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
"num_timesteps": 2015232,
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate":
|
|
|
|
|
|
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
@@ -69,14 +72,14 @@
|
|
69 |
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
82 |
"ent_coef": 0.0,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e8535c280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e8535c310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e8535c3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e8535c430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0e8535c4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0e8535c550>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e8535c5e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0e8535c670>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e8535c700>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e8535c790>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e8535c820>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0e8535d0c0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
"num_timesteps": 2015232,
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670689921505697815,
|
51 |
+
"learning_rate": {
|
52 |
+
":type:": "<class 'function'>",
|
53 |
+
":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLAksTQxx8AIgAFAB9AWQBfQJ8AXwCawVyGHwBUwB8AlMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCURz8zqSowVTJhhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUjAZyZXR2YWyUjAZtaW5fbHKUh5SMHzxpcHl0aG9uLWlucHV0LTExLWI4NzI3NDVlNjczYT6UjARmdW5jlEsLQwoABwgBBAEIAQQBlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgYaBCMDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP3R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
54 |
+
},
|
55 |
"tensorboard_log": null,
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWVIQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLAksTQxx8AIgAFAB9AWQBfQJ8AXwCawVyGHwBUwB8AlMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCURz8zqSowVTJhhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUjAZyZXR2YWyUjAZtaW5fbHKUh5SMHzxpcHl0aG9uLWlucHV0LTExLWI4NzI3NDVlNjczYT6UjARmdW5jlEsLQwoABwgBBAEIAQQBlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgYaBCMDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP3R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYLpb17nPG6AcYcPpO+PL4tMmW8ykeJPQAAgD8AAAAAjaiGva4fkbp1TBq4jfYSs45gGztx2jI3AACAPwAAgD9AodQ9bauvPyIhvD7z+tu+q+4gPksNOz0AAAAAAAAAAIBXdr3v7xY/sJZDvWuNUL90XOu9BUMNPQAAAAAAAAAAAERAPZAtqD/qaw0/6q4hv6ZwL7s+ygc+AAAAAAAAAAAaBSa96fsnvOY7Sj6CVdW8FvepvNXdbr4AAIA/AACAP0D8vT1fDBQ+CH1PvjpZ175KeWs84HkQvQAAAAAAAAAAzf8kva4JpLoBRJgz3Bt4LyQAzzoSPK+zAACAPwAAgD9mJww9MzG9PxsdoT5xTQ0+//8evVcskL0AAAAAAAAAAGaCWD6/Hxg/dpVMvgav475oLII+/ow/vgAAAAAAAAAA4FwaPms5nD9CJhQ/zwgov/RpSD5o0eY9AAAAAAAAAAAzqX09XHABO43dLb7UC7K92nsBvRrWHj8AAIA/AAAAAGYUcD2HtmU+YtCZvYyAIr/zQQ8+0vA1OwAAAAAAAAAAmmSFvSU4sj+WHgC/0DBcviWM97q1WjC+AAAAAAAAAACmwSY+gnWLP4I6xT4P706/VV9sPmyDrT0AAAAAAAAAAOalPz2WZoU/P360PQZmgb8Ez2o8M9jougAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
63 |
},
|
64 |
"_last_episode_starts": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
67 |
},
|
68 |
"_last_original_obs": null,
|
69 |
"_episode_num": 0,
|
|
|
72 |
"_current_progress_remaining": -0.007616000000000067,
|
73 |
"ep_info_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB9MwfIQ+cECUhpRSlIwBbJRLkowBdJRHQKYgV7655JN1fZQoaAZoCWgPQwg8wJMW7lVyQJSGlFKUaBVLh2gWR0CmIGqjBVMmdX2UKGgGaAloD0MIgPPixJd2cUCUhpRSlGgVS5loFkdApiCMynDR+nV9lChoBmgJaA9DCCeiX1v//HBAlIaUUpRoFUusaBZHQKYguOskpqh1fZQoaAZoCWgPQwgyrrg4qktwQJSGlFKUaBVLqWgWR0CmOB5u63AmdX2UKGgGaAloD0MIlDMUd7xucECUhpRSlGgVS4poFkdApjguOU+s5nV9lChoBmgJaA9DCJRnXg67lnBAlIaUUpRoFUusaBZHQKY4LcQiA2B1fZQoaAZoCWgPQwibcoV3OXtxQJSGlFKUaBVLpmgWR0CmOHdsSCe3dX2UKGgGaAloD0MI9kArMOR2ckCUhpRSlGgVS6RoFkdApjiBs2vSt3V9lChoBmgJaA9DCOmdCrgn+XBAlIaUUpRoFUuCaBZHQKY4qZ/CqId1fZQoaAZoCWgPQwgd5ssLcHpyQJSGlFKUaBVLfmgWR0CmOLDd56dEdX2UKGgGaAloD0MIu9IyUu9sckCUhpRSlGgVS9JoFkdApji66z3RHHV9lChoBmgJaA9DCAggtYkTYnFAlIaUUpRoFUulaBZHQKY428brC3x1fZQoaAZoCWgPQwiVn1T79HNwQJSGlFKUaBVLn2gWR0CmOOitaIN3dX2UKGgGaAloD0MIEtkHWdbfcUCUhpRSlGgVS7BoFkdApjkADklu33V9lChoBmgJaA9DCNB+pIiMCHNAlIaUUpRoFUu6aBZHQKY5B+jM3ZR1fZQoaAZoCWgPQwh5yf/k7y9vQJSGlFKUaBVLlGgWR0CmOTYRdyDJdX2UKGgGaAloD0MIg6Pk1TlfcUCUhpRSlGgVS8NoFkdApjlvFirksHV9lChoBmgJaA9DCOEH51MHLHNAlIaUUpRoFUuXaBZHQKY5fMzMzM11fZQoaAZoCWgPQwgl58QeWp1wQJSGlFKUaBVLxGgWR0CmOYUeU6gedX2UKGgGaAloD0MIkdWtnpOXc0CUhpRSlGgVS6RoFkdApjmprcj7h3V9lChoBmgJaA9DCGQCfo2kG3FAlIaUUpRoFUu2aBZHQKY5sJlar3l1fZQoaAZoCWgPQwgAAtaq3WRxQJSGlFKUaBVLq2gWR0CmObqqfe1sdX2UKGgGaAloD0MI3QvMCkX/cECUhpRSlGgVS6ZoFkdApjn/SMLncXV9lChoBmgJaA9DCO8dNSaEQHJAlIaUUpRoFUuVaBZHQKY6D1A7gbZ1fZQoaAZoCWgPQwinBprPuZdxQJSGlFKUaBVLymgWR0CmOk60QbuMdX2UKGgGaAloD0MIpkboZ+orc0CUhpRSlGgVS6RoFkdApjpaZc9nsnV9lChoBmgJaA9DCJ+Qnbex0UZAlIaUUpRoFUtkaBZHQKY6ZsLv1Dl1fZQoaAZoCWgPQwjnGfuSzQFyQJSGlFKUaBVLpmgWR0CmOmvXkHUudX2UKGgGaAloD0MII7w9CIHWcUCUhpRSlGgVS6hoFkdApjqRlWfbsXV9lChoBmgJaA9DCKMeotGdxHFAlIaUUpRoFUuraBZHQKY6kNCqp991fZQoaAZoCWgPQwgqVg3CXIlyQJSGlFKUaBVL1WgWR0CmOqEHt4RmdX2UKGgGaAloD0MIp3hcVMu6c0CUhpRSlGgVS55oFkdApjqpQm/nGXV9lChoBmgJaA9DCJqw/WTMc3NAlIaUUpRoFUvxaBZHQKY61LpRoAZ1fZQoaAZoCWgPQwjueJPf4jdxQJSGlFKUaBVLi2gWR0CmOvd1MdtEdX2UKGgGaAloD0MInKc65OZycUCUhpRSlGgVS69oFkdApjr/Mr3CbnV9lChoBmgJaA9DCH/cfvlk9XNAlIaUUpRoFUusaBZHQKY7DWT5ftx1fZQoaAZoCWgPQwhiEi7k0R5xQJSGlFKUaBVLiWgWR0CmO07Rv3rVdX2UKGgGaAloD0MIDtlAutjcc0CUhpRSlGgVS6NoFkdApjt+6ErXlXV9lChoBmgJaA9DCJAvoYLDPHJAlIaUUpRoFUvLaBZHQKY7icqe9SN1fZQoaAZoCWgPQwjEsMOYtNBxQJSGlFKUaBVLhmgWR0CmO8pMg2ZRdX2UKGgGaAloD0MIbqKW5hYHckCUhpRSlGgVS41oFkdApjvdGd7OV3V9lChoBmgJaA9DCJBlwcTfqXJAlIaUUpRoFUvvaBZHQKY73EAHVwx1fZQoaAZoCWgPQwjxnC0gtFhyQJSGlFKUaBVLxWgWR0CmPCPUjLSvdX2UKGgGaAloD0MIDCO9qN19ckCUhpRSlGgVS71oFkdApjwutMfzSXV9lChoBmgJaA9DCKRS7GgcZXJAlIaUUpRoFUvHaBZHQKY8NVbRne11fZQoaAZoCWgPQwg0EMtmTsBxQJSGlFKUaBVLq2gWR0CmPDqp97WvdX2UKGgGaAloD0MIwtzu5f5Oc0CUhpRSlGgVS45oFkdApjxWHerMknV9lChoBmgJaA9DCIKQLGBCYHJAlIaUUpRoFUuhaBZHQKY8Xq7Ackt1fZQoaAZoCWgPQwithVlop79yQJSGlFKUaBVL2mgWR0CmPG4nv2GqdX2UKGgGaAloD0MIONkG7sDXcECUhpRSlGgVS6VoFkdApjyQddVvM3V9lChoBmgJaA9DCAD9vn8zM3FAlIaUUpRoFUulaBZHQKY8nfyf+S91fZQoaAZoCWgPQwjkLOxpx2pyQJSGlFKUaBVLjWgWR0CmPKPSMLncdX2UKGgGaAloD0MIgv+tZAescUCUhpRSlGgVS4ZoFkdApjzGrGR3eXV9lChoBmgJaA9DCKhtwygIoXBAlIaUUpRoFUuaaBZHQKY86MrEtNB1fZQoaAZoCWgPQwgDs0KRLulyQJSGlFKUaBVNCQFoFkdApj0UAeaKDXV9lChoBmgJaA9DCA1slWCxsXBAlIaUUpRoFUuvaBZHQKY9e2jO9nN1fZQoaAZoCWgPQwg4aK8+niFxQJSGlFKUaBVLlmgWR0CmPY6IN3GGdX2UKGgGaAloD0MIKC1cVuGjcECUhpRSlGgVS4poFkdApj2iwdKdx3V9lChoBmgJaA9DCBZNZyeDWXBAlIaUUpRoFUulaBZHQKY9quTzNEB1fZQoaAZoCWgPQwiis8wilGhyQJSGlFKUaBVLw2gWR0CmPa9H+ZPVdX2UKGgGaAloD0MIvLN228WnckCUhpRSlGgVS9poFkdApj3Vx4ptrXV9lChoBmgJaA9DCHfWbrtQIXRAlIaUUpRoFUuraBZHQKY968lolD51fZQoaAZoCWgPQwgPuRlugFxyQJSGlFKUaBVLymgWR0CmPhcW0qpcdX2UKGgGaAloD0MIjPLMy2FCc0CUhpRSlGgVS6hoFkdApj4+R7qptXV9lChoBmgJaA9DCHeHFAMkb3JAlIaUUpRoFUuraBZHQKY+P4N7SiN1fZQoaAZoCWgPQwjb+uk/q+VxQJSGlFKUaBVL12gWR0CmPj8IAwPAdX2UKGgGaAloD0MIS633G61KckCUhpRSlGgVS4poFkdApj5ttTDO1XV9lChoBmgJaA9DCBdIUPwYnXFAlIaUUpRoFUvgaBZHQKY+hbNbC791fZQoaAZoCWgPQwh9PzVeOotyQJSGlFKUaBVL1WgWR0CmPpEeyRjjdX2UKGgGaAloD0MIh6bs9ENBckCUhpRSlGgVS79oFkdApj6YeHSF5HV9lChoBmgJaA9DCKX1twQgjXFAlIaUUpRoFUvCaBZHQKY+v7pFCsx1fZQoaAZoCWgPQwjM0k7NJeRxQJSGlFKUaBVLkmgWR0CmPtfb0voNdX2UKGgGaAloD0MIlKXW+40cckCUhpRSlGgVS45oFkdApj76jYZl4HV9lChoBmgJaA9DCPrUsUpp6nNAlIaUUpRoFUuoaBZHQKY/G8wpON51fZQoaAZoCWgPQwhCmUaTy6NwQJSGlFKUaBVLoGgWR0CmPxugxrSFdX2UKGgGaAloD0MIuaZAZucScUCUhpRSlGgVS7doFkdApj9aZc9nsnV9lChoBmgJaA9DCEgZcQEoknNAlIaUUpRoFUuiaBZHQKY/aHPeHi51fZQoaAZoCWgPQwiaeXJNgdVwQJSGlFKUaBVLnGgWR0CmP4CUPhAGdX2UKGgGaAloD0MIRWXDmsptckCUhpRSlGgVS7hoFkdApj+FTFVDKHV9lChoBmgJaA9DCJGBPLt8ez9AlIaUUpRoFUtXaBZHQKY/ipWmxdJ1fZQoaAZoCWgPQwjTZwdcV81wQJSGlFKUaBVLlGgWR0CmP5Dmr8zidX2UKGgGaAloD0MIzM8NTZkQcECUhpRSlGgVS5NoFkdApj+Pq5byH3V9lChoBmgJaA9DCCWzeodbFXFAlIaUUpRoFUuiaBZHQKY/rHtF8Xx1fZQoaAZoCWgPQwgibeNP1FRzQJSGlFKUaBVLmWgWR0CmP9yLIgeSdX2UKGgGaAloD0MIstXllEAKckCUhpRSlGgVS51oFkdApj/595QgtHV9lChoBmgJaA9DCFAaahTSK3JAlIaUUpRoFUuwaBZHQKZAHwOvt+l1fZQoaAZoCWgPQwhMF2L1ByByQJSGlFKUaBVLzGgWR0CmQDzLns9kdX2UKGgGaAloD0MIbw7Xas90c0CUhpRSlGgVS6JoFkdApkBLmuDBdnV9lChoBmgJaA9DCFkZjXxeNm9AlIaUUpRoFUucaBZHQKZAYJ6Y3Nt1fZQoaAZoCWgPQwjnps04TcdwQJSGlFKUaBVLtWgWR0CmQL7LEDQrdX2UKGgGaAloD0MIlsyxvOvCc0CUhpRSlGgVS8RoFkdApkDi48U21nV9lChoBmgJaA9DCEm9p3LaDnFAlIaUUpRoFUugaBZHQKZA8xgy/K11fZQoaAZoCWgPQwh4uB0a1rlwQJSGlFKUaBVLr2gWR0CmQPy44Ia+dX2UKGgGaAloD0MI/rW8cn1vckCUhpRSlGgVS8FoFkdApkEZJbt7bHV9lChoBmgJaA9DCPLqHANyJXRAlIaUUpRoFUuzaBZHQKZBMS+QEIR1fZQoaAZoCWgPQwgzpIrilU5yQJSGlFKUaBVLuGgWR0CmQTbiIciodX2UKGgGaAloD0MI0Lnb9VLycUCUhpRSlGgVS7VoFkdApkFWitaIN3V9lChoBmgJaA9DCP5+MVsy/nFAlIaUUpRoFUvFaBZHQKZBWgA6uGN1fZQoaAZoCWgPQwjpJjEI7OtyQJSGlFKUaBVLzWgWR0CmQWRgRbr1dWUu"
|
76 |
},
|
77 |
"ep_success_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
},
|
81 |
+
"_n_updates": 1230,
|
82 |
+
"n_steps": 1024,
|
83 |
"gamma": 0.99,
|
84 |
"gae_lambda": 0.95,
|
85 |
"ent_coef": 0.0,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad0de61da5551047f8862cccaeb19a720b74aa5ee7404e18a3a609f6d349d7bc
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b412a71fadc991e4b1387ba72d6af381f538e19a24e8d374cf92223beaf9fb1
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.0485568454981, "std_reward": 75.64249683409443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T17:15:40.848921"}
|