nemanjar commited on
Commit
42ee1ee
·
1 Parent(s): e6b3043

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 289.14 +/- 18.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd81fac1ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd81fac1d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd81fac1dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd81fac1e50>", "_build": "<function ActorCriticPolicy._build at 0x7fd81fac1ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd81fac1f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd81fac7040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd81fac70d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd81fac7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd81fac71f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd81fac7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd81fac0450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670520206661493589, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqxczsPQXC88iG7vLuPWD1zE6a9It9DPAAAgD8AAIA/zcC7O9qjsj8+8uI9o3JBvrkZbrsCfnA7AAAAAAAAAAAzOys73wMaP65Ci7wwkku/Bj8MPHlQprsAAAAAAAAAAM1OGL2ejOk9GHkoPexmx75e7n684NGBPAAAAAAAAAAAwOQJvnqy+j75AgU+TNELv8ynIr6yzeU9AAAAAAAAAADNBC671x9PPkuSGL2kUN2+KGXhvMMgObsAAAAAAAAAANppp70tL40/yKsVvgCHXL/yRz2+iKVivAAAAAAAAAAAmlkAPYhFsLwW1/u9lbUSPSq4ub2Zyzm9AACAPwAAgD8znYY8XhWMPQRRKL7BYBC/zHpUPVIqJb0AAAAAAAAAACAAH74SDyk/Vr+jPcT1DL98v4a+Y4AzPgAAAAAAAAAAANyiO8X2mTzQF7++1EsHvnGmGr4AIUE/AACAPwAAAAAAG/+8ucxwP87Mnr3CFVS/s9yTvR8guzwAAAAAAAAAAAZKcT7UDRo/g8nOvav2Mb/EeJ0+3dExvgAAAAAAAAAAM+i4PClMQ7w6C2i+TDMLv6+Etr3gSk4+AACAPwAAAAAAH8C8JLKkPyWg372EdAe/irqRvRvxgb0AAAAAAAAAAABCzT1JY8o+qsMavW1JKL8LGkI+apR2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjgHZ611ccUCUhpRSlIwBbJRLuYwBdJRHQK0879XtBv91fZQoaAZoCWgPQwiaJJaU+3pyQJSGlFKUaBVLx2gWR0CtPQawt8NQdX2UKGgGaAloD0MIumsJ+aCRcUCUhpRSlGgVS5poFkdArT0mOwPiDXV9lChoBmgJaA9DCAiOy7ip2FNAlIaUUpRoFUtyaBZHQK09UkzoEB91fZQoaAZoCWgPQwhRobq5eDBxQJSGlFKUaBVLxmgWR0CtPVkXLvCudX2UKGgGaAloD0MI1skZinvPcUCUhpRSlGgVS8JoFkdArT1mZTho/XV9lChoBmgJaA9DCDZbecn/hHNAlIaUUpRoFUvZaBZHQK09amPYFq11fZQoaAZoCWgPQwjTg4JSdIZyQJSGlFKUaBVLomgWR0CtWE9+gDigdX2UKGgGaAloD0MIvp8aL92zcUCUhpRSlGgVS8BoFkdArVhWYx+KCXV9lChoBmgJaA9DCEDbatZZg3JAlIaUUpRoFUviaBZHQK1Ya0qpcX51fZQoaAZoCWgPQwj2JRsPNrlyQJSGlFKUaBVLx2gWR0CtWJrJbMX8dX2UKGgGaAloD0MIFw/vOXBcc0CUhpRSlGgVS6NoFkdArVihMzuWr3V9lChoBmgJaA9DCBgjEoVWsXBAlIaUUpRoFUuNaBZHQK1Yo+eOGTN1fZQoaAZoCWgPQwhB9Q8iGcVxQJSGlFKUaBVLnWgWR0CtWLcABDG+dX2UKGgGaAloD0MIBmhbzfqccECUhpRSlGgVS5loFkdArVjmZuyeI3V9lChoBmgJaA9DCL8n1qkyaXNAlIaUUpRoFUvNaBZHQK1Y9JDmbLF1fZQoaAZoCWgPQwhnnfF9sXxzQJSGlFKUaBVL5GgWR0CtWQfBN21VdX2UKGgGaAloD0MIPE1mvG2CckCUhpRSlGgVS5VoFkdArVkK5f+junV9lChoBmgJaA9DCM5Q3PFmI3JAlIaUUpRoFUvMaBZHQK1ZGTewcHZ1fZQoaAZoCWgPQwjLvcCs0KxzQJSGlFKUaBVLuWgWR0CtWYM2WIGhdX2UKGgGaAloD0MIM25qoDleckCUhpRSlGgVS8xoFkdArVm3HvMKTnV9lChoBmgJaA9DCFNA2v9AwHJAlIaUUpRoFUvcaBZHQK1Z17MxGlR1fZQoaAZoCWgPQwhyNEdWfoRxQJSGlFKUaBVLo2gWR0CtWjbsOXmedX2UKGgGaAloD0MIAiocQSrCb0CUhpRSlGgVS5FoFkdArVo9tGd7OXV9lChoBmgJaA9DCJlKP+Es1nFAlIaUUpRoFUuXaBZHQK1aRzltCRh1fZQoaAZoCWgPQwjw94vZkkFxQJSGlFKUaBVLwWgWR0CtWnUC7sfJdX2UKGgGaAloD0MI0UGXcCh8c0CUhpRSlGgVS9RoFkdArVqx3Tuv2XV9lChoBmgJaA9DCAUVVb9SsnFAlIaUUpRoFUuYaBZHQK1au9B8hLZ1fZQoaAZoCWgPQwhu+N10iyNyQJSGlFKUaBVLxmgWR0CtWtc94eLfdX2UKGgGaAloD0MIsi0DzhKzckCUhpRSlGgVS61oFkdArVrXOdGy5nV9lChoBmgJaA9DCGyXNhxWG3JAlIaUUpRoFUvDaBZHQK1a5GyX2M91fZQoaAZoCWgPQwjw/Q3aa7dyQJSGlFKUaBVLrmgWR0CtWvkmplz2dX2UKGgGaAloD0MIFZD2P8A/aECUhpRSlGgVTegDaBZHQK1bBAWSEDh1fZQoaAZoCWgPQwhzZVBtMHJyQJSGlFKUaBVLvGgWR0CtWw11GLDRdX2UKGgGaAloD0MIVvMcka+eckCUhpRSlGgVS8NoFkdArVs0cn3L3nV9lChoBmgJaA9DCO8dNSYEKXFAlIaUUpRoFUuZaBZHQK1bVTDwYtR1fZQoaAZoCWgPQwglIvyL4P1xQJSGlFKUaBVLv2gWR0CtW4oMSbpedX2UKGgGaAloD0MIG7tE9RbyckCUhpRSlGgVS6toFkdArVud/c32mHV9lChoBmgJaA9DCKa21EFeu3FAlIaUUpRoFUucaBZHQK1b13fQ8fV1fZQoaAZoCWgPQwhruMg9XbpxQJSGlFKUaBVLn2gWR0CtW9eJ53TvdX2UKGgGaAloD0MImNpSB3kAckCUhpRSlGgVS55oFkdArVwEnJDE33V9lChoBmgJaA9DCAZ/v5itFnNAlIaUUpRoFUvCaBZHQK1cLFglWwN1fZQoaAZoCWgPQwiV1t8SQBlxQJSGlFKUaBVLn2gWR0CtXFj0Dlo2dX2UKGgGaAloD0MIFwyuuWPWckCUhpRSlGgVS6toFkdArVyghyKekHV9lChoBmgJaA9DCPW+8bVnlnNAlIaUUpRoFUvHaBZHQK1cqW1MM7V1fZQoaAZoCWgPQwjTTPc6qepzQJSGlFKUaBVLs2gWR0CtXKt5t3wDdX2UKGgGaAloD0MIjBL0F7r2ckCUhpRSlGgVS8toFkdArVyrULDyfHV9lChoBmgJaA9DCFis4SJ3ZHNAlIaUUpRoFUu4aBZHQK1cyueSSvF1fZQoaAZoCWgPQwhq3nGKDixzQJSGlFKUaBVLx2gWR0CtXMpudf9hdX2UKGgGaAloD0MIzCTqBV9pc0CUhpRSlGgVS9RoFkdArVzdyT6i03V9lChoBmgJaA9DCIY41sXt2HNAlIaUUpRoFUuuaBZHQK1c4eVcD8t1fZQoaAZoCWgPQwhj8gaY+YFyQJSGlFKUaBVLoGgWR0CtXOFw1ivxdX2UKGgGaAloD0MIY+3vbE/LcUCUhpRSlGgVS7RoFkdArV1OIuXeFnV9lChoBmgJaA9DCCANp8yNXnFAlIaUUpRoFUvCaBZHQK1dWpb2USt1fZQoaAZoCWgPQwiO6nQg61FxQJSGlFKUaBVLnmgWR0CtXXwI+nqFdX2UKGgGaAloD0MIy0dS0sPvcUCUhpRSlGgVS7loFkdArV2VkWhysHV9lChoBmgJaA9DCKRTVz5LXXNAlIaUUpRoFUu+aBZHQK1doY0EX+F1fZQoaAZoCWgPQwiatn9lJcpxQJSGlFKUaBVLomgWR0CtXa/779AHdX2UKGgGaAloD0MI+Ddorz6mcUCUhpRSlGgVS5loFkdArV4SEtdzGXV9lChoBmgJaA9DCHoYWp1cTHBAlIaUUpRoFUuhaBZHQK1eJHfdhy91fZQoaAZoCWgPQwg4Ef3aumxyQJSGlFKUaBVLo2gWR0CtXirdvbXZdX2UKGgGaAloD0MIJ8Eb0iiXckCUhpRSlGgVS5loFkdArV4zLB9Cu3V9lChoBmgJaA9DCNGuQspPUHNAlIaUUpRoFUvFaBZHQK1eMGJvYOF1fZQoaAZoCWgPQwjoiHyXkk1xQJSGlFKUaBVLqmgWR0CtXjOJUHY6dX2UKGgGaAloD0MIKZKvBJLLcECUhpRSlGgVS7BoFkdArV52o73fynV9lChoBmgJaA9DCDuNtFQeL3FAlIaUUpRoFUuyaBZHQK1ef80k4WF1fZQoaAZoCWgPQwim8naEkzNzQJSGlFKUaBVLx2gWR0CtXrFFtsN2dX2UKGgGaAloD0MIfZQRF0CCckCUhpRSlGgVS+JoFkdArV7ZaX8fm3V9lChoBmgJaA9DCLzLRXynj3JAlIaUUpRoFUudaBZHQK1fHAXVLBd1fZQoaAZoCWgPQwie7GZGP1RzQJSGlFKUaBVLqWgWR0CtX0nRTjvNdX2UKGgGaAloD0MIk40HWyzdc0CUhpRSlGgVS9BoFkdArV9K5Xlr/XV9lChoBmgJaA9DCDGW6ZeIRnNAlIaUUpRoFUveaBZHQK1fe3azu4R1fZQoaAZoCWgPQwh1PdF14aVyQJSGlFKUaBVLx2gWR0CtX3z2OAAidX2UKGgGaAloD0MIovFEEKctc0CUhpRSlGgVS9FoFkdArV9/OObRW3V9lChoBmgJaA9DCFEtIoqJRHJAlIaUUpRoFUuYaBZHQK1fiMfA9FF1fZQoaAZoCWgPQwhXYMjqVg1xQJSGlFKUaBVLmGgWR0CtX6FVcUuddX2UKGgGaAloD0MIKIHNOfjicECUhpRSlGgVS6poFkdArV/BjUd7wHV9lChoBmgJaA9DCLqilBAsBXFAlIaUUpRoFUuraBZHQK1f0H0K7Zp1fZQoaAZoCWgPQwgwDi4dM9ZwQJSGlFKUaBVLqGgWR0CtYBeyZ8a5dX2UKGgGaAloD0MIxXWMK+5Bc0CUhpRSlGgVS7ZoFkdArWAvW8RL9XV9lChoBmgJaA9DCLlUpS3udXNAlIaUUpRoFUvgaBZHQK1gSKPXCj11fZQoaAZoCWgPQwjHSsyzUqRyQJSGlFKUaBVL4WgWR0CtYEf8l5WzdX2UKGgGaAloD0MIAmN9A1NUcUCUhpRSlGgVS7RoFkdArWBjJCBwuXV9lChoBmgJaA9DCGJodXKGIHFAlIaUUpRoFUuuaBZHQK1gemUnogV1fZQoaAZoCWgPQwgp7KLoQSVzQJSGlFKUaBVLuGgWR0CtYMpSzgMudX2UKGgGaAloD0MIAW2rWadZckCUhpRSlGgVS8VoFkdArWEXsNUfgnV9lChoBmgJaA9DCExRLo3fTm9AlIaUUpRoFUukaBZHQK1hVvWpZOl1fZQoaAZoCWgPQwhagoyAygxyQJSGlFKUaBVL0GgWR0CtYWfgzguRdX2UKGgGaAloD0MInil0XuOjc0CUhpRSlGgVS+RoFkdArWFqcCo0h3V9lChoBmgJaA9DCD83NGVnJXJAlIaUUpRoFUvMaBZHQK1hbIre67N1fZQoaAZoCWgPQwinejL/KG9zQJSGlFKUaBVL1mgWR0CtYXePJaJRdX2UKGgGaAloD0MIlIeFWtNPc0CUhpRSlGgVS8hoFkdArWF6DujRD3V9lChoBmgJaA9DCEBR2bAmP3JAlIaUUpRoFUvAaBZHQK1hirNnoPl1fZQoaAZoCWgPQwhwzR3974F0QJSGlFKUaBVL52gWR0CtYZ4x+KCQdX2UKGgGaAloD0MILCgMyrTnb0CUhpRSlGgVS6poFkdArWGuaUiY9nV9lChoBmgJaA9DCNwPeGBAenJAlIaUUpRoFUuoaBZHQK1hvuTA31l1fZQoaAZoCWgPQwivBigNtV9yQJSGlFKUaBVLmWgWR0CtYc7PY4ACdX2UKGgGaAloD0MIzlFHx9XdcUCUhpRSlGgVS6RoFkdArWHMQ5FPSHV9lChoBmgJaA9DCCWzeodbrnFAlIaUUpRoFUuiaBZHQK1h9gtvn8t1fZQoaAZoCWgPQwjLZaNzfi1zQJSGlFKUaBVLymgWR0CtYhvfKp1idWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88ecb98e3fa33304428b6a70bb2e1952378f061edc87271071243ae463605049
3
+ size 147089
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd81fac1ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd81fac1d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd81fac1dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd81fac1e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd81fac1ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd81fac1f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd81fac7040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd81fac70d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd81fac7160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd81fac71f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd81fac7280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd81fac0450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670520206661493589,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqxczsPQXC88iG7vLuPWD1zE6a9It9DPAAAgD8AAIA/zcC7O9qjsj8+8uI9o3JBvrkZbrsCfnA7AAAAAAAAAAAzOys73wMaP65Ci7wwkku/Bj8MPHlQprsAAAAAAAAAAM1OGL2ejOk9GHkoPexmx75e7n684NGBPAAAAAAAAAAAwOQJvnqy+j75AgU+TNELv8ynIr6yzeU9AAAAAAAAAADNBC671x9PPkuSGL2kUN2+KGXhvMMgObsAAAAAAAAAANppp70tL40/yKsVvgCHXL/yRz2+iKVivAAAAAAAAAAAmlkAPYhFsLwW1/u9lbUSPSq4ub2Zyzm9AACAPwAAgD8znYY8XhWMPQRRKL7BYBC/zHpUPVIqJb0AAAAAAAAAACAAH74SDyk/Vr+jPcT1DL98v4a+Y4AzPgAAAAAAAAAAANyiO8X2mTzQF7++1EsHvnGmGr4AIUE/AACAPwAAAAAAG/+8ucxwP87Mnr3CFVS/s9yTvR8guzwAAAAAAAAAAAZKcT7UDRo/g8nOvav2Mb/EeJ0+3dExvgAAAAAAAAAAM+i4PClMQ7w6C2i+TDMLv6+Etr3gSk4+AACAPwAAAAAAH8C8JLKkPyWg372EdAe/irqRvRvxgb0AAAAAAAAAAABCzT1JY8o+qsMavW1JKL8LGkI+apR2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjgHZ611ccUCUhpRSlIwBbJRLuYwBdJRHQK0879XtBv91fZQoaAZoCWgPQwiaJJaU+3pyQJSGlFKUaBVLx2gWR0CtPQawt8NQdX2UKGgGaAloD0MIumsJ+aCRcUCUhpRSlGgVS5poFkdArT0mOwPiDXV9lChoBmgJaA9DCAiOy7ip2FNAlIaUUpRoFUtyaBZHQK09UkzoEB91fZQoaAZoCWgPQwhRobq5eDBxQJSGlFKUaBVLxmgWR0CtPVkXLvCudX2UKGgGaAloD0MI1skZinvPcUCUhpRSlGgVS8JoFkdArT1mZTho/XV9lChoBmgJaA9DCDZbecn/hHNAlIaUUpRoFUvZaBZHQK09amPYFq11fZQoaAZoCWgPQwjTg4JSdIZyQJSGlFKUaBVLomgWR0CtWE9+gDigdX2UKGgGaAloD0MIvp8aL92zcUCUhpRSlGgVS8BoFkdArVhWYx+KCXV9lChoBmgJaA9DCEDbatZZg3JAlIaUUpRoFUviaBZHQK1Ya0qpcX51fZQoaAZoCWgPQwj2JRsPNrlyQJSGlFKUaBVLx2gWR0CtWJrJbMX8dX2UKGgGaAloD0MIFw/vOXBcc0CUhpRSlGgVS6NoFkdArVihMzuWr3V9lChoBmgJaA9DCBgjEoVWsXBAlIaUUpRoFUuNaBZHQK1Yo+eOGTN1fZQoaAZoCWgPQwhB9Q8iGcVxQJSGlFKUaBVLnWgWR0CtWLcABDG+dX2UKGgGaAloD0MIBmhbzfqccECUhpRSlGgVS5loFkdArVjmZuyeI3V9lChoBmgJaA9DCL8n1qkyaXNAlIaUUpRoFUvNaBZHQK1Y9JDmbLF1fZQoaAZoCWgPQwhnnfF9sXxzQJSGlFKUaBVL5GgWR0CtWQfBN21VdX2UKGgGaAloD0MIPE1mvG2CckCUhpRSlGgVS5VoFkdArVkK5f+junV9lChoBmgJaA9DCM5Q3PFmI3JAlIaUUpRoFUvMaBZHQK1ZGTewcHZ1fZQoaAZoCWgPQwjLvcCs0KxzQJSGlFKUaBVLuWgWR0CtWYM2WIGhdX2UKGgGaAloD0MIM25qoDleckCUhpRSlGgVS8xoFkdArVm3HvMKTnV9lChoBmgJaA9DCFNA2v9AwHJAlIaUUpRoFUvcaBZHQK1Z17MxGlR1fZQoaAZoCWgPQwhyNEdWfoRxQJSGlFKUaBVLo2gWR0CtWjbsOXmedX2UKGgGaAloD0MIAiocQSrCb0CUhpRSlGgVS5FoFkdArVo9tGd7OXV9lChoBmgJaA9DCJlKP+Es1nFAlIaUUpRoFUuXaBZHQK1aRzltCRh1fZQoaAZoCWgPQwjw94vZkkFxQJSGlFKUaBVLwWgWR0CtWnUC7sfJdX2UKGgGaAloD0MI0UGXcCh8c0CUhpRSlGgVS9RoFkdArVqx3Tuv2XV9lChoBmgJaA9DCAUVVb9SsnFAlIaUUpRoFUuYaBZHQK1au9B8hLZ1fZQoaAZoCWgPQwhu+N10iyNyQJSGlFKUaBVLxmgWR0CtWtc94eLfdX2UKGgGaAloD0MIsi0DzhKzckCUhpRSlGgVS61oFkdArVrXOdGy5nV9lChoBmgJaA9DCGyXNhxWG3JAlIaUUpRoFUvDaBZHQK1a5GyX2M91fZQoaAZoCWgPQwjw/Q3aa7dyQJSGlFKUaBVLrmgWR0CtWvkmplz2dX2UKGgGaAloD0MIFZD2P8A/aECUhpRSlGgVTegDaBZHQK1bBAWSEDh1fZQoaAZoCWgPQwhzZVBtMHJyQJSGlFKUaBVLvGgWR0CtWw11GLDRdX2UKGgGaAloD0MIVvMcka+eckCUhpRSlGgVS8NoFkdArVs0cn3L3nV9lChoBmgJaA9DCO8dNSYEKXFAlIaUUpRoFUuZaBZHQK1bVTDwYtR1fZQoaAZoCWgPQwglIvyL4P1xQJSGlFKUaBVLv2gWR0CtW4oMSbpedX2UKGgGaAloD0MIG7tE9RbyckCUhpRSlGgVS6toFkdArVud/c32mHV9lChoBmgJaA9DCKa21EFeu3FAlIaUUpRoFUucaBZHQK1b13fQ8fV1fZQoaAZoCWgPQwhruMg9XbpxQJSGlFKUaBVLn2gWR0CtW9eJ53TvdX2UKGgGaAloD0MImNpSB3kAckCUhpRSlGgVS55oFkdArVwEnJDE33V9lChoBmgJaA9DCAZ/v5itFnNAlIaUUpRoFUvCaBZHQK1cLFglWwN1fZQoaAZoCWgPQwiV1t8SQBlxQJSGlFKUaBVLn2gWR0CtXFj0Dlo2dX2UKGgGaAloD0MIFwyuuWPWckCUhpRSlGgVS6toFkdArVyghyKekHV9lChoBmgJaA9DCPW+8bVnlnNAlIaUUpRoFUvHaBZHQK1cqW1MM7V1fZQoaAZoCWgPQwjTTPc6qepzQJSGlFKUaBVLs2gWR0CtXKt5t3wDdX2UKGgGaAloD0MIjBL0F7r2ckCUhpRSlGgVS8toFkdArVyrULDyfHV9lChoBmgJaA9DCFis4SJ3ZHNAlIaUUpRoFUu4aBZHQK1cyueSSvF1fZQoaAZoCWgPQwhq3nGKDixzQJSGlFKUaBVLx2gWR0CtXMpudf9hdX2UKGgGaAloD0MIzCTqBV9pc0CUhpRSlGgVS9RoFkdArVzdyT6i03V9lChoBmgJaA9DCIY41sXt2HNAlIaUUpRoFUuuaBZHQK1c4eVcD8t1fZQoaAZoCWgPQwhj8gaY+YFyQJSGlFKUaBVLoGgWR0CtXOFw1ivxdX2UKGgGaAloD0MIY+3vbE/LcUCUhpRSlGgVS7RoFkdArV1OIuXeFnV9lChoBmgJaA9DCCANp8yNXnFAlIaUUpRoFUvCaBZHQK1dWpb2USt1fZQoaAZoCWgPQwiO6nQg61FxQJSGlFKUaBVLnmgWR0CtXXwI+nqFdX2UKGgGaAloD0MIy0dS0sPvcUCUhpRSlGgVS7loFkdArV2VkWhysHV9lChoBmgJaA9DCKRTVz5LXXNAlIaUUpRoFUu+aBZHQK1doY0EX+F1fZQoaAZoCWgPQwiatn9lJcpxQJSGlFKUaBVLomgWR0CtXa/779AHdX2UKGgGaAloD0MI+Ddorz6mcUCUhpRSlGgVS5loFkdArV4SEtdzGXV9lChoBmgJaA9DCHoYWp1cTHBAlIaUUpRoFUuhaBZHQK1eJHfdhy91fZQoaAZoCWgPQwg4Ef3aumxyQJSGlFKUaBVLo2gWR0CtXirdvbXZdX2UKGgGaAloD0MIJ8Eb0iiXckCUhpRSlGgVS5loFkdArV4zLB9Cu3V9lChoBmgJaA9DCNGuQspPUHNAlIaUUpRoFUvFaBZHQK1eMGJvYOF1fZQoaAZoCWgPQwjoiHyXkk1xQJSGlFKUaBVLqmgWR0CtXjOJUHY6dX2UKGgGaAloD0MIKZKvBJLLcECUhpRSlGgVS7BoFkdArV52o73fynV9lChoBmgJaA9DCDuNtFQeL3FAlIaUUpRoFUuyaBZHQK1ef80k4WF1fZQoaAZoCWgPQwim8naEkzNzQJSGlFKUaBVLx2gWR0CtXrFFtsN2dX2UKGgGaAloD0MIfZQRF0CCckCUhpRSlGgVS+JoFkdArV7ZaX8fm3V9lChoBmgJaA9DCLzLRXynj3JAlIaUUpRoFUudaBZHQK1fHAXVLBd1fZQoaAZoCWgPQwie7GZGP1RzQJSGlFKUaBVLqWgWR0CtX0nRTjvNdX2UKGgGaAloD0MIk40HWyzdc0CUhpRSlGgVS9BoFkdArV9K5Xlr/XV9lChoBmgJaA9DCDGW6ZeIRnNAlIaUUpRoFUveaBZHQK1fe3azu4R1fZQoaAZoCWgPQwh1PdF14aVyQJSGlFKUaBVLx2gWR0CtX3z2OAAidX2UKGgGaAloD0MIovFEEKctc0CUhpRSlGgVS9FoFkdArV9/OObRW3V9lChoBmgJaA9DCFEtIoqJRHJAlIaUUpRoFUuYaBZHQK1fiMfA9FF1fZQoaAZoCWgPQwhXYMjqVg1xQJSGlFKUaBVLmGgWR0CtX6FVcUuddX2UKGgGaAloD0MIKIHNOfjicECUhpRSlGgVS6poFkdArV/BjUd7wHV9lChoBmgJaA9DCLqilBAsBXFAlIaUUpRoFUuraBZHQK1f0H0K7Zp1fZQoaAZoCWgPQwgwDi4dM9ZwQJSGlFKUaBVLqGgWR0CtYBeyZ8a5dX2UKGgGaAloD0MIxXWMK+5Bc0CUhpRSlGgVS7ZoFkdArWAvW8RL9XV9lChoBmgJaA9DCLlUpS3udXNAlIaUUpRoFUvgaBZHQK1gSKPXCj11fZQoaAZoCWgPQwjHSsyzUqRyQJSGlFKUaBVL4WgWR0CtYEf8l5WzdX2UKGgGaAloD0MIAmN9A1NUcUCUhpRSlGgVS7RoFkdArWBjJCBwuXV9lChoBmgJaA9DCGJodXKGIHFAlIaUUpRoFUuuaBZHQK1gemUnogV1fZQoaAZoCWgPQwgp7KLoQSVzQJSGlFKUaBVLuGgWR0CtYMpSzgMudX2UKGgGaAloD0MIAW2rWadZckCUhpRSlGgVS8VoFkdArWEXsNUfgnV9lChoBmgJaA9DCExRLo3fTm9AlIaUUpRoFUukaBZHQK1hVvWpZOl1fZQoaAZoCWgPQwhagoyAygxyQJSGlFKUaBVL0GgWR0CtYWfgzguRdX2UKGgGaAloD0MInil0XuOjc0CUhpRSlGgVS+RoFkdArWFqcCo0h3V9lChoBmgJaA9DCD83NGVnJXJAlIaUUpRoFUvMaBZHQK1hbIre67N1fZQoaAZoCWgPQwinejL/KG9zQJSGlFKUaBVL1mgWR0CtYXePJaJRdX2UKGgGaAloD0MIlIeFWtNPc0CUhpRSlGgVS8hoFkdArWF6DujRD3V9lChoBmgJaA9DCEBR2bAmP3JAlIaUUpRoFUvAaBZHQK1hirNnoPl1fZQoaAZoCWgPQwhwzR3974F0QJSGlFKUaBVL52gWR0CtYZ4x+KCQdX2UKGgGaAloD0MILCgMyrTnb0CUhpRSlGgVS6poFkdArWGuaUiY9nV9lChoBmgJaA9DCNwPeGBAenJAlIaUUpRoFUuoaBZHQK1hvuTA31l1fZQoaAZoCWgPQwivBigNtV9yQJSGlFKUaBVLmWgWR0CtYc7PY4ACdX2UKGgGaAloD0MIzlFHx9XdcUCUhpRSlGgVS6RoFkdArWHMQ5FPSHV9lChoBmgJaA9DCCWzeodbrnFAlIaUUpRoFUuiaBZHQK1h9gtvn8t1fZQoaAZoCWgPQwjLZaNzfi1zQJSGlFKUaBVLymgWR0CtYhvfKp1idWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1230,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.96,
82
+ "ent_coef": 0.005,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0a81bbe6c03c94884b8426e76da1c7081056bc28c7a0f75f00941371c915af
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85cbe62ae9b806c2751959a611ebd01f457155e885e9d52f7ca41b400118b83d
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 289.1394633421402, "std_reward": 18.306427412809033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T18:04:19.079326"}