--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - webdataset metrics: - accuracy - f1 - precision - recall model-index: - name: frost-vision-v2-google_vit-base-patch16-224-v2024-11-09 results: - task: name: Image Classification type: image-classification dataset: name: webdataset type: webdataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9316901408450704 - name: F1 type: f1 value: 0.8267857142857142 - name: Precision type: precision value: 0.8312387791741472 - name: Recall type: recall value: 0.822380106571936 --- # frost-vision-v2-google_vit-base-patch16-224-v2024-11-09 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1769 - Accuracy: 0.9317 - F1: 0.8268 - Precision: 0.8312 - Recall: 0.8224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2067 | 1.4085 | 100 | 0.2229 | 0.9155 | 0.7736 | 0.8249 | 0.7282 | | 0.1989 | 2.8169 | 200 | 0.2252 | 0.9102 | 0.7650 | 0.7950 | 0.7371 | | 0.1364 | 4.2254 | 300 | 0.1834 | 0.9268 | 0.8163 | 0.8120 | 0.8206 | | 0.1368 | 5.6338 | 400 | 0.1874 | 0.9268 | 0.7981 | 0.8801 | 0.7300 | | 0.1197 | 7.0423 | 500 | 0.1769 | 0.9317 | 0.8268 | 0.8312 | 0.8224 | | 0.099 | 8.4507 | 600 | 0.1841 | 0.9313 | 0.8189 | 0.8580 | 0.7833 | | 0.0748 | 9.8592 | 700 | 0.1739 | 0.9359 | 0.8366 | 0.8457 | 0.8277 | | 0.0706 | 11.2676 | 800 | 0.1762 | 0.9373 | 0.8399 | 0.8506 | 0.8295 | | 0.0865 | 12.6761 | 900 | 0.1766 | 0.9408 | 0.8486 | 0.8611 | 0.8366 | | 0.061 | 14.0845 | 1000 | 0.1852 | 0.9380 | 0.8445 | 0.8401 | 0.8490 | | 0.0449 | 15.4930 | 1100 | 0.1795 | 0.9401 | 0.8482 | 0.8528 | 0.8437 | | 0.0488 | 16.9014 | 1200 | 0.2065 | 0.9310 | 0.8253 | 0.8283 | 0.8224 | | 0.0483 | 18.3099 | 1300 | 0.1977 | 0.9377 | 0.8427 | 0.8434 | 0.8419 | | 0.0317 | 19.7183 | 1400 | 0.2006 | 0.9370 | 0.8395 | 0.8478 | 0.8313 | | 0.0411 | 21.1268 | 1500 | 0.2068 | 0.9363 | 0.8368 | 0.8498 | 0.8242 | | 0.0512 | 22.5352 | 1600 | 0.2056 | 0.9391 | 0.8446 | 0.8545 | 0.8348 | | 0.0329 | 23.9437 | 1700 | 0.2127 | 0.9338 | 0.8294 | 0.8479 | 0.8117 | | 0.0197 | 25.3521 | 1800 | 0.2122 | 0.9335 | 0.8286 | 0.8463 | 0.8117 | | 0.0316 | 26.7606 | 1900 | 0.2050 | 0.9373 | 0.8399 | 0.8506 | 0.8295 | | 0.0133 | 28.1690 | 2000 | 0.2019 | 0.9408 | 0.8495 | 0.8571 | 0.8419 | | 0.0181 | 29.5775 | 2100 | 0.2031 | 0.9401 | 0.8474 | 0.8566 | 0.8384 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1