nemik commited on
Commit
25feb25
1 Parent(s): 883ad3a

Model save

Browse files
Files changed (2) hide show
  1. README.md +113 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - webdataset
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: frost-vision-v2-google_vit-base-patch16-224-v2024-11-11
16
+ results:
17
+ - task:
18
+ name: Image Classification
19
+ type: image-classification
20
+ dataset:
21
+ name: webdataset
22
+ type: webdataset
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.9411971830985916
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8474885844748858
33
+ - name: Precision
34
+ type: precision
35
+ value: 0.836036036036036
36
+ - name: Recall
37
+ type: recall
38
+ value: 0.8592592592592593
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # frost-vision-v2-google_vit-base-patch16-224-v2024-11-11
45
+
46
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1712
49
+ - Accuracy: 0.9412
50
+ - F1: 0.8475
51
+ - Precision: 0.8360
52
+ - Recall: 0.8593
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 30
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
+ | 0.3127 | 1.4085 | 100 | 0.2932 | 0.8940 | 0.6725 | 0.8153 | 0.5722 |
86
+ | 0.193 | 2.8169 | 200 | 0.2136 | 0.9190 | 0.7834 | 0.7969 | 0.7704 |
87
+ | 0.1503 | 4.2254 | 300 | 0.1815 | 0.9278 | 0.8100 | 0.8108 | 0.8093 |
88
+ | 0.1313 | 5.6338 | 400 | 0.1623 | 0.9327 | 0.8183 | 0.8415 | 0.7963 |
89
+ | 0.1166 | 7.0423 | 500 | 0.1658 | 0.9320 | 0.8224 | 0.8172 | 0.8278 |
90
+ | 0.093 | 8.4507 | 600 | 0.1606 | 0.9384 | 0.8405 | 0.8276 | 0.8537 |
91
+ | 0.0931 | 9.8592 | 700 | 0.1625 | 0.9366 | 0.8370 | 0.8191 | 0.8556 |
92
+ | 0.0733 | 11.2676 | 800 | 0.1714 | 0.9356 | 0.8310 | 0.8287 | 0.8333 |
93
+ | 0.0693 | 12.6761 | 900 | 0.1568 | 0.9398 | 0.8403 | 0.8475 | 0.8333 |
94
+ | 0.0615 | 14.0845 | 1000 | 0.1666 | 0.9342 | 0.8270 | 0.8262 | 0.8278 |
95
+ | 0.0562 | 15.4930 | 1100 | 0.1636 | 0.9394 | 0.8404 | 0.8420 | 0.8389 |
96
+ | 0.0507 | 16.9014 | 1200 | 0.1613 | 0.9401 | 0.8435 | 0.8388 | 0.8481 |
97
+ | 0.0552 | 18.3099 | 1300 | 0.1590 | 0.9412 | 0.8455 | 0.8447 | 0.8463 |
98
+ | 0.0439 | 19.7183 | 1400 | 0.1704 | 0.9394 | 0.8425 | 0.8333 | 0.8519 |
99
+ | 0.0367 | 21.1268 | 1500 | 0.1702 | 0.9426 | 0.8484 | 0.8523 | 0.8444 |
100
+ | 0.0424 | 22.5352 | 1600 | 0.1685 | 0.9394 | 0.8419 | 0.8358 | 0.8481 |
101
+ | 0.0306 | 23.9437 | 1700 | 0.1771 | 0.9380 | 0.8397 | 0.8262 | 0.8537 |
102
+ | 0.0352 | 25.3521 | 1800 | 0.1691 | 0.9401 | 0.8440 | 0.8364 | 0.8519 |
103
+ | 0.0323 | 26.7606 | 1900 | 0.1687 | 0.9426 | 0.8509 | 0.8409 | 0.8611 |
104
+ | 0.0297 | 28.1690 | 2000 | 0.1732 | 0.9401 | 0.8455 | 0.8304 | 0.8611 |
105
+ | 0.0229 | 29.5775 | 2100 | 0.1712 | 0.9412 | 0.8475 | 0.8360 | 0.8593 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.44.2
111
+ - Pytorch 2.5.0+cu121
112
+ - Datasets 3.1.0
113
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bde7118aa68f5882219513dd493454fb0f0e02917924ac0050ab96ecb1f6ba58
3
  size 343248584
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:201cad16344a51f7b700dd64ae7718476ea3a08124be2583a936975384ebdea2
3
  size 343248584