Model save
Browse files- README.md +113 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-384
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- webdataset
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: frost-vision-v2-google_vit-base-patch16-384-v2024-11-10
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Image Classification
|
19 |
+
type: image-classification
|
20 |
+
dataset:
|
21 |
+
name: webdataset
|
22 |
+
type: webdataset
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9376760563380282
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.8415398388540735
|
33 |
+
- name: Precision
|
34 |
+
type: precision
|
35 |
+
value: 0.8545454545454545
|
36 |
+
- name: Recall
|
37 |
+
type: recall
|
38 |
+
value: 0.8289241622574955
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# frost-vision-v2-google_vit-base-patch16-384-v2024-11-10
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the webdataset dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2101
|
49 |
+
- Accuracy: 0.9377
|
50 |
+
- F1: 0.8415
|
51 |
+
- Precision: 0.8545
|
52 |
+
- Recall: 0.8289
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 0.0002
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 30
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
+
| 0.2243 | 1.4085 | 100 | 0.2088 | 0.9243 | 0.7981 | 0.8534 | 0.7496 |
|
86 |
+
| 0.2438 | 2.8169 | 200 | 0.1819 | 0.9299 | 0.8103 | 0.8817 | 0.7496 |
|
87 |
+
| 0.1338 | 4.2254 | 300 | 0.1608 | 0.9377 | 0.8449 | 0.8397 | 0.8501 |
|
88 |
+
| 0.1224 | 5.6338 | 400 | 0.1735 | 0.9271 | 0.8179 | 0.8158 | 0.8201 |
|
89 |
+
| 0.1065 | 7.0423 | 500 | 0.1847 | 0.9275 | 0.8187 | 0.8172 | 0.8201 |
|
90 |
+
| 0.1008 | 8.4507 | 600 | 0.1710 | 0.9405 | 0.8506 | 0.8528 | 0.8483 |
|
91 |
+
| 0.1005 | 9.8592 | 700 | 0.1823 | 0.9384 | 0.8405 | 0.8698 | 0.8131 |
|
92 |
+
| 0.0756 | 11.2676 | 800 | 0.1771 | 0.9415 | 0.8520 | 0.8613 | 0.8430 |
|
93 |
+
| 0.0653 | 12.6761 | 900 | 0.1971 | 0.9324 | 0.8310 | 0.8295 | 0.8325 |
|
94 |
+
| 0.0367 | 14.0845 | 1000 | 0.2123 | 0.9296 | 0.8221 | 0.8294 | 0.8148 |
|
95 |
+
| 0.0459 | 15.4930 | 1100 | 0.2006 | 0.9335 | 0.832 | 0.8387 | 0.8254 |
|
96 |
+
| 0.0559 | 16.9014 | 1200 | 0.2097 | 0.9313 | 0.8232 | 0.8470 | 0.8007 |
|
97 |
+
| 0.0382 | 18.3099 | 1300 | 0.2055 | 0.9352 | 0.8372 | 0.8401 | 0.8342 |
|
98 |
+
| 0.0361 | 19.7183 | 1400 | 0.2070 | 0.9335 | 0.8305 | 0.8449 | 0.8166 |
|
99 |
+
| 0.0358 | 21.1268 | 1500 | 0.1959 | 0.9398 | 0.8458 | 0.8653 | 0.8272 |
|
100 |
+
| 0.0382 | 22.5352 | 1600 | 0.2097 | 0.9320 | 0.8269 | 0.8412 | 0.8131 |
|
101 |
+
| 0.0285 | 23.9437 | 1700 | 0.2016 | 0.9415 | 0.8515 | 0.8639 | 0.8395 |
|
102 |
+
| 0.0141 | 25.3521 | 1800 | 0.2161 | 0.9366 | 0.8384 | 0.8537 | 0.8236 |
|
103 |
+
| 0.0179 | 26.7606 | 1900 | 0.2073 | 0.9377 | 0.8427 | 0.8495 | 0.8360 |
|
104 |
+
| 0.0263 | 28.1690 | 2000 | 0.2097 | 0.9391 | 0.8457 | 0.8556 | 0.8360 |
|
105 |
+
| 0.0191 | 29.5775 | 2100 | 0.2101 | 0.9377 | 0.8415 | 0.8545 | 0.8289 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.44.2
|
111 |
+
- Pytorch 2.5.0+cu121
|
112 |
+
- Datasets 3.1.0
|
113 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344415944
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cabc559423b45550befb870507744874ceb594e6c71241a9e3ed6cf33f0311c
|
3 |
size 344415944
|