--- library_name: transformers license: other base_model: apple/mobilevit-xx-small tags: - generated_from_trainer datasets: - webdataset metrics: - accuracy - f1 - precision - recall model-index: - name: mobilevit-xx-small-v2024-10-22 results: - task: name: Image Classification type: image-classification dataset: name: webdataset type: webdataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9297777777777778 - name: F1 type: f1 value: 0.8175519630484989 - name: Precision type: precision value: 0.8119266055045872 - name: Recall type: recall value: 0.8232558139534883 --- # mobilevit-xx-small-v2024-10-22 This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on the webdataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1708 - Accuracy: 0.9298 - F1: 0.8176 - Precision: 0.8119 - Recall: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6549 | 1.7544 | 100 | 0.6289 | 0.82 | 0.6260 | 0.5191 | 0.7884 | | 0.4616 | 3.5088 | 200 | 0.4192 | 0.8867 | 0.7296 | 0.6706 | 0.8 | | 0.3101 | 5.2632 | 300 | 0.3071 | 0.9036 | 0.7318 | 0.7810 | 0.6884 | | 0.2932 | 7.0175 | 400 | 0.2486 | 0.908 | 0.7460 | 0.7896 | 0.7070 | | 0.2652 | 8.7719 | 500 | 0.2279 | 0.9138 | 0.7674 | 0.7921 | 0.7442 | | 0.2253 | 10.5263 | 600 | 0.2100 | 0.9218 | 0.7859 | 0.8240 | 0.7512 | | 0.2257 | 12.2807 | 700 | 0.1951 | 0.9249 | 0.8019 | 0.8085 | 0.7953 | | 0.2468 | 14.0351 | 800 | 0.1906 | 0.9307 | 0.8199 | 0.8142 | 0.8256 | | 0.1796 | 15.7895 | 900 | 0.1949 | 0.9276 | 0.8120 | 0.8055 | 0.8186 | | 0.1888 | 17.5439 | 1000 | 0.1807 | 0.9307 | 0.8178 | 0.8216 | 0.8140 | | 0.202 | 19.2982 | 1100 | 0.1772 | 0.9342 | 0.8287 | 0.8249 | 0.8326 | | 0.1824 | 21.0526 | 1200 | 0.1826 | 0.9276 | 0.8080 | 0.8186 | 0.7977 | | 0.1808 | 22.8070 | 1300 | 0.1682 | 0.9347 | 0.8297 | 0.8268 | 0.8326 | | 0.1792 | 24.5614 | 1400 | 0.1688 | 0.9364 | 0.8324 | 0.8392 | 0.8256 | | 0.1852 | 26.3158 | 1500 | 0.1725 | 0.9338 | 0.8269 | 0.8260 | 0.8279 | | 0.177 | 28.0702 | 1600 | 0.1690 | 0.9351 | 0.8282 | 0.8381 | 0.8186 | | 0.1857 | 29.8246 | 1700 | 0.1708 | 0.9298 | 0.8176 | 0.8119 | 0.8233 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1