nemik commited on
Commit
a5364b3
1 Parent(s): 656ec1a

Model save

Browse files
Files changed (2) hide show
  1. README.md +109 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: apple/mobilevitv2-1.0-imagenet1k-256
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - webdataset
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost
16
+ results:
17
+ - task:
18
+ name: Image Classification
19
+ type: image-classification
20
+ dataset:
21
+ name: webdataset
22
+ type: webdataset
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.9422222222222222
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8488372093023255
33
+ - name: Precision
34
+ type: precision
35
+ value: 0.8548009367681498
36
+ - name: Recall
37
+ type: recall
38
+ value: 0.8429561200923787
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost
45
+
46
+ This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on the webdataset dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1545
49
+ - Accuracy: 0.9422
50
+ - F1: 0.8488
51
+ - Precision: 0.8548
52
+ - Recall: 0.8430
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 0.0002
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 30
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
+ | 0.6635 | 1.7544 | 100 | 0.6513 | 0.7604 | 0.5705 | 0.4355 | 0.8268 |
86
+ | 0.4461 | 3.5088 | 200 | 0.3972 | 0.8769 | 0.7292 | 0.6322 | 0.8614 |
87
+ | 0.2599 | 5.2632 | 300 | 0.2404 | 0.9227 | 0.8049 | 0.7821 | 0.8291 |
88
+ | 0.2074 | 7.0175 | 400 | 0.1942 | 0.9347 | 0.8256 | 0.8488 | 0.8037 |
89
+ | 0.167 | 8.7719 | 500 | 0.1772 | 0.9364 | 0.8354 | 0.8326 | 0.8383 |
90
+ | 0.1661 | 10.5263 | 600 | 0.1653 | 0.9342 | 0.8259 | 0.8417 | 0.8106 |
91
+ | 0.1603 | 12.2807 | 700 | 0.1649 | 0.9409 | 0.8473 | 0.8425 | 0.8522 |
92
+ | 0.1523 | 14.0351 | 800 | 0.1568 | 0.9467 | 0.8592 | 0.8735 | 0.8453 |
93
+ | 0.1506 | 15.7895 | 900 | 0.1548 | 0.9431 | 0.8494 | 0.8657 | 0.8337 |
94
+ | 0.1485 | 17.5439 | 1000 | 0.1539 | 0.9444 | 0.8545 | 0.8615 | 0.8476 |
95
+ | 0.1263 | 19.2982 | 1100 | 0.1521 | 0.944 | 0.8535 | 0.8595 | 0.8476 |
96
+ | 0.1444 | 21.0526 | 1200 | 0.1552 | 0.9418 | 0.8471 | 0.8561 | 0.8383 |
97
+ | 0.1133 | 22.8070 | 1300 | 0.1531 | 0.9449 | 0.8561 | 0.8601 | 0.8522 |
98
+ | 0.1019 | 24.5614 | 1400 | 0.1577 | 0.9431 | 0.8491 | 0.8675 | 0.8314 |
99
+ | 0.1141 | 26.3158 | 1500 | 0.1560 | 0.9413 | 0.8472 | 0.8492 | 0.8453 |
100
+ | 0.1087 | 28.0702 | 1600 | 0.1573 | 0.9422 | 0.8492 | 0.8531 | 0.8453 |
101
+ | 0.1015 | 29.8246 | 1700 | 0.1545 | 0.9422 | 0.8488 | 0.8548 | 0.8430 |
102
+
103
+
104
+ ### Framework versions
105
+
106
+ - Transformers 4.44.2
107
+ - Pytorch 2.4.1+cu121
108
+ - Datasets 3.0.1
109
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9920af31cd7cfefbd66f819676fa530f75ac76a39db54cf3ec723b1f417509be
3
  size 17675500
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b62986c5205a0786914b559b297393093ab882829c493058f8d5150b0d081eaf
3
  size 17675500