Model save
Browse files- README.md +109 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: apple/mobilevitv2-1.0-imagenet1k-256
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- webdataset
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Image Classification
|
19 |
+
type: image-classification
|
20 |
+
dataset:
|
21 |
+
name: webdataset
|
22 |
+
type: webdataset
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9422222222222222
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.8488372093023255
|
33 |
+
- name: Precision
|
34 |
+
type: precision
|
35 |
+
value: 0.8548009367681498
|
36 |
+
- name: Recall
|
37 |
+
type: recall
|
38 |
+
value: 0.8429561200923787
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on the webdataset dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1545
|
49 |
+
- Accuracy: 0.9422
|
50 |
+
- F1: 0.8488
|
51 |
+
- Precision: 0.8548
|
52 |
+
- Recall: 0.8430
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 0.0002
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 30
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
+
| 0.6635 | 1.7544 | 100 | 0.6513 | 0.7604 | 0.5705 | 0.4355 | 0.8268 |
|
86 |
+
| 0.4461 | 3.5088 | 200 | 0.3972 | 0.8769 | 0.7292 | 0.6322 | 0.8614 |
|
87 |
+
| 0.2599 | 5.2632 | 300 | 0.2404 | 0.9227 | 0.8049 | 0.7821 | 0.8291 |
|
88 |
+
| 0.2074 | 7.0175 | 400 | 0.1942 | 0.9347 | 0.8256 | 0.8488 | 0.8037 |
|
89 |
+
| 0.167 | 8.7719 | 500 | 0.1772 | 0.9364 | 0.8354 | 0.8326 | 0.8383 |
|
90 |
+
| 0.1661 | 10.5263 | 600 | 0.1653 | 0.9342 | 0.8259 | 0.8417 | 0.8106 |
|
91 |
+
| 0.1603 | 12.2807 | 700 | 0.1649 | 0.9409 | 0.8473 | 0.8425 | 0.8522 |
|
92 |
+
| 0.1523 | 14.0351 | 800 | 0.1568 | 0.9467 | 0.8592 | 0.8735 | 0.8453 |
|
93 |
+
| 0.1506 | 15.7895 | 900 | 0.1548 | 0.9431 | 0.8494 | 0.8657 | 0.8337 |
|
94 |
+
| 0.1485 | 17.5439 | 1000 | 0.1539 | 0.9444 | 0.8545 | 0.8615 | 0.8476 |
|
95 |
+
| 0.1263 | 19.2982 | 1100 | 0.1521 | 0.944 | 0.8535 | 0.8595 | 0.8476 |
|
96 |
+
| 0.1444 | 21.0526 | 1200 | 0.1552 | 0.9418 | 0.8471 | 0.8561 | 0.8383 |
|
97 |
+
| 0.1133 | 22.8070 | 1300 | 0.1531 | 0.9449 | 0.8561 | 0.8601 | 0.8522 |
|
98 |
+
| 0.1019 | 24.5614 | 1400 | 0.1577 | 0.9431 | 0.8491 | 0.8675 | 0.8314 |
|
99 |
+
| 0.1141 | 26.3158 | 1500 | 0.1560 | 0.9413 | 0.8472 | 0.8492 | 0.8453 |
|
100 |
+
| 0.1087 | 28.0702 | 1600 | 0.1573 | 0.9422 | 0.8492 | 0.8531 | 0.8453 |
|
101 |
+
| 0.1015 | 29.8246 | 1700 | 0.1545 | 0.9422 | 0.8488 | 0.8548 | 0.8430 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.44.2
|
107 |
+
- Pytorch 2.4.1+cu121
|
108 |
+
- Datasets 3.0.1
|
109 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 17675500
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b62986c5205a0786914b559b297393093ab882829c493058f8d5150b0d081eaf
|
3 |
size 17675500
|