File size: 10,006 Bytes
1f7eddd
 
 
5c2d033
 
 
 
 
 
 
 
 
 
1f7eddd
 
 
 
 
 
 
 
 
 
 
 
5c2d033
 
1f7eddd
 
5c2d033
 
1f7eddd
5c2d033
 
7bd3ab7
5c2d033
1f7eddd
 
 
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
5c2d033
 
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
 
1f7eddd
 
5c2d033
1f7eddd
 
 
 
 
5c2d033
 
 
 
 
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
7bd3ab7
1f7eddd
7bd3ab7
1f7eddd
 
 
7bd3ab7
1f7eddd
7bd3ab7
1f7eddd
 
7bd3ab7
 
 
 
 
 
 
 
9ab5309
 
1f7eddd
5c2d033
1f7eddd
 
5c2d033
1f7eddd
7bd3ab7
1f7eddd
7bd3ab7
5c2d033
7bd3ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0d5c1
 
 
 
 
 
 
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
 
 
 
5c2d033
1f7eddd
 
 
5c2d033
 
1f7eddd
 
5c2d033
1f7eddd
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
 
 
 
 
 
5c2d033
1f7eddd
 
 
5c2d033
1f7eddd
 
 
 
 
 
 
 
 
 
 
5c2d033
1f7eddd
 
a1aa7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
---
base_model: google/gemma-2-9b-it
library_name: peft
license: apache-2.0
datasets:
- neo4j/text2cypher-2024v1
language:
- en
pipeline_tag: text2text-generation
tags:
- neo4j
- cypher
- text2cypher
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

This model serves as a demonstration of how fine-tuning foundational models using the Neo4j-Text2Cypher(2024) Dataset ([link](https://huggingface.co/datasets/neo4j/text2cypher-2024v1)) can enhance performance on the Text2Cypher task.\
Please note, this is part of ongoing research and exploration, aimed at highlighting the dataset's potential rather than a production-ready solution.


**Base model:** google/gemma-2-9b-it \
**Dataset:** neo4j/text2cypher-2024v1

An overview of the finetuned models and benchmarking results are shared at [Link](TODO Link to Blogposts)


<!-- - **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed] -->

<!-- ### Model Sources [optional]

<!-- Provide the basic links for the model. -->

<!-- - **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed] -->

<!-- ## Uses -->

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

<!-- ### Direct Use -->

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
<!-- [More Information Needed] -->

<!-- ### Downstream Use [optional] -->

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

<!-- [More Information Needed] -->

<!-- ### Out-of-Scope Use
 -->
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

<!-- [More Information Needed] -->

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

We need to be cautious about a few risks:
* In our evaluation setup, the training and test sets come from the same data distribution (sampled from a larger dataset). If the data distribution changes, the results may not follow the same pattern.
* The datasets used were gathered from publicly available sources. Over time, foundational models may access both the training and test sets, potentially achieving similar or even better results.

Also check the related blogpost:[Link](TODO Link to Blogposts)

<!-- ### Recommendations -->

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

<!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. -->

<!-- ## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed] -->

 ## Training Details

<!-- ### Training Data --> 

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

<!-- [More Information Needed]-->

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Used RunPod with following setup:

* 1 x A100 PCIe
* 31 vCPU 117 GB RAM
* runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04
* On-Demand - Secure Cloud
* 60 GB Disk
* 60 GB Pod Volume
<!-- * ~16 hours
* $30 -->

<!-- #### Preprocessing [optional]

[More Information Needed]
 -->

#### Training Hyperparameters

<!-- - **Training regime:** -->
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
* lora_config = LoraConfig(
    r=64,
    lora_alpha=64,
    target_modules=target_modules,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
* sft_config = SFTConfig(
    dataset_text_field=dataset_text_field,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=8,
    dataset_num_proc=16,
    max_seq_length=1600,
    logging_dir="./logs",
    num_train_epochs=1,
    learning_rate=2e-5,
    save_steps=5,
    save_total_limit=1,
    logging_steps=5,
    output_dir="outputs",
    optim="paged_adamw_8bit",
    save_strategy="steps",
)
<!-- TODO Check if this config is used 
  bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
) -->
<!-- #### Speeds, Sizes, Times [optional] -->

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

<!-- [More Information Needed] -->

<!-- ## Evaluation -->

<!-- This section describes the evaluation protocols and provides the results. -->

<!-- ### Testing Data, Factors & Metrics -->

<!-- #### Testing Data -->

<!-- This should link to a Dataset Card if possible. -->

<!-- [More Information Needed] -->

<!-- #### Factors -->

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

<!-- [More Information Needed]

#### Metrics -->

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

<!-- [More Information Needed]

### Results

[More Information Needed]

#### Summary -->



<!-- ## Model Examination [optional]
 -->
<!-- Relevant interpretability work for the model goes here -->

<!-- [More Information Needed]

## Environmental Impact -->

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software 

[More Information Needed]

## Citation [optional]-->

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

<!-- **BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional] -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

<!-- [More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed] -->
### Framework versions

- PEFT 0.12.0

### Example Cypher generation
```
from peft import PeftModel, PeftConfig
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)

instruction = (
    "Generate Cypher statement to query a graph database. "
    "Use only the provided relationship types and properties in the schema. \n"
    "Schema: {schema} \n Question: {question}  \n Cypher output: "
)

def prepare_chat_prompt(question, schema) -> list[dict]:
    chat = [
        {
            "role": "user",
            "content": instruction.format(
                schema=schema, question=question
            ),
        }
    ]
    return chat

def _postprocess_output_cypher(output_cypher: str) -> str:
    # Remove any explanation. E.g.  MATCH...\n\n**Explanation:**\n\n -> MATCH...
    # Remove cypher indicator. E.g.```cypher\nMATCH...```` --> MATCH...
    # Note: Possible to have both:
    #   E.g. ```cypher\nMATCH...````\n\n**Explanation:**\n\n --> MATCH...
    partition_by = "**Explanation:**"
    output_cypher, _, _ = output_cypher.partition(partition_by)
    output_cypher = output_cypher.strip("`\n")
    output_cypher = output_cypher.lstrip("cypher\n")
    output_cypher = output_cypher.strip("`\n ")
    return output_cypher

# Model
base_model_name = "google/gemma-2-9b-it"
model_name = "neo4j/text2cypher-gemma-2-9b-it-finetuned-2024v1"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
config = PeftConfig.from_pretrained(model_name)
model = PeftModel.from_pretrained(base_model, model_name)

# Question
question = "What are the movies of Tom Hanks?"
schema = "(:Actor)-[:ActedIn]->(:Movie)"
new_message = prepare_chat_prompt(question=question, schema=schema)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = tokenizer.apply_chat_template(new_message, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt", padding=True)

# Any other parameters
model_generate_parameters = {
    "top_p": 0.9,
    "temperature": 0.2,
    "max_new_tokens": 512,
    "do_sample": True,
    "pad_token_id": tokenizer.eos_token_id,
}

inputs.to(model.device)
model.eval()
with torch.no_grad():
    tokens = model.generate(**inputs, **model_generate_parameters)
    tokens = tokens[:, inputs.input_ids.shape[1] :]
    raw_outputs = tokenizer.batch_decode(tokens, skip_special_tokens=True)
    outputs = [_postprocess_output_cypher(output) for output in raw_outputs]
    
print(outputs)
> ["MATCH (hanks:Actor {name: 'Tom Hanks'})-[:ActedIn]->(m:Movie) RETURN m"]
```