File size: 1,267 Bytes
e1cf0c1 38c68c6 e1cf0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9881889764
- name: NER Recall
type: recall
value: 0.9881889764
- name: NER F Score
type: f_score
value: 0.9881889764
---
This is a custom named entity recognition model for clinical data. Inorder to see the real usage of the model, \
please enter clinical text in the text field.
---
| Feature | Description |
| --- | --- |
| **Name** | `en_pipeline` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (3 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `MEDICALCONDITION`, `MEDICINE`, `PATHOGEN` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 98.82 |
| `ENTS_P` | 98.82 |
| `ENTS_R` | 98.82 |
| `TOK2VEC_LOSS` | 4597.80 |
| `NER_LOSS` | 29304.32 | |