File size: 9,377 Bytes
38d1711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
import argparse
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
from previewer.modules import Previewer

os.environ['TOKENIZERS_PARALLELISM'] = 'false'

DESCRIPTION = "# Stable Cascade"
DESCRIPTION += "\n<p style=\"text-align: center\">Неофициальная демонстрация Stable Cascade от <a href='https://www.youtube.com/@nerual_dreming/' target='_blank'>Nerual Dreming и нейросети</a> основано на <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Cascade</a>, новая модель высокого разрешения для генерации изображений по текстовому запросу от Stability AI, основанная на архитектуре Würstchen - <a href='https://huggingface.co/stabilityai/stable-cascade/blob/main/LICENSE' target='_blank'>только для некоммерческого и научного использования</a></p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = True

parser = argparse.ArgumentParser(description='Gradio App Control')
parser.add_argument('--share', action='store_true', help='Create a public shareable URL')
parser.add_argument('--inbrowser', action='store_true', help='Automatically launch the application in a browser')
parser.add_argument('--server_port', type=int, default=7860, help='Server port')
args = parser.parse_args()

dtype = torch.bfloat16
if torch.cuda.is_available():
  device = "cuda"
elif torch.backends.mps.is_available():
  device = "mps"
  dtype = torch.float32
else:
  device = "cpu"
print(f"device={device}")
if device != "cpu":
    prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
    decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=dtype)#.to(device) 

    if ENABLE_CPU_OFFLOAD:
        prior_pipeline.enable_model_cpu_offload()
        decoder_pipeline.enable_model_cpu_offload()
    else:
        prior_pipeline.to(device)
        decoder_pipeline.to(device)

    if USE_TORCH_COMPILE:
        prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
        decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
    
    if PREVIEW_IMAGES:
        previewer = Previewer()
        previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
        previewer.load_state_dict(previewer_state_dict)
        def callback_prior(i, t, latents):
            output = previewer(latents)
            output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
            return output
        callback_steps = 1
    else:
        previewer = None
        callback_prior = None
        callback_steps = None
else:
    prior_pipeline = None
    decoder_pipeline = None


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    prior_num_inference_steps: int = 30,
    # prior_timesteps: List[float] = None,
    prior_guidance_scale: float = 4.0,
    decoder_num_inference_steps: int = 12,
    # decoder_timesteps: List[float] = None,
    decoder_guidance_scale: float = 0.0,
    num_images_per_prompt: int = 2,
#    profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
    previewer.eval().requires_grad_(False).to(device).to(dtype)
    prior_pipeline.to(device)
    decoder_pipeline.to(device)
    
    generator = torch.Generator().manual_seed(seed)
    prior_output = prior_pipeline(
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=prior_num_inference_steps,
        timesteps=DEFAULT_STAGE_C_TIMESTEPS,
        negative_prompt=negative_prompt,
        guidance_scale=prior_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        generator=generator,
        callback=callback_prior,
        callback_steps=callback_steps
    )

    if PREVIEW_IMAGES:
        for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
            r = next(prior_output)
            if isinstance(r, list):
                yield r[0]
        prior_output = r

    decoder_output = decoder_pipeline(
        image_embeddings=prior_output.image_embeddings,
        prompt=prompt,
        num_inference_steps=decoder_num_inference_steps,
        # timesteps=decoder_timesteps,
        guidance_scale=decoder_guidance_scale,
        negative_prompt=negative_prompt,
        generator=generator,
        output_type="pil",
    ).images

    yield decoder_output[0]


examples = [
    "An astronaut riding a green horse",
    "A mecha robot in a favela by Tarsila do Amaral",
    "The sprirt of a Tamagotchi wandering in the city of Los Angeles",
    "A delicious feijoada ramen dish"
]

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Введите запрос",
                container=False,
            )
            run_button = gr.Button("Создать", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Дополнительные опции", open=False):
        negative_prompt = gr.Text(
            label="Негативный запорос",
            max_lines=1,
            placeholder="Введите негативный запрос",
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Случайный seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Ширина",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=512,
                value=1024,
            )
            height = gr.Slider(
                label="Высота",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=512,
                value=1024,
            )
            num_images_per_prompt = gr.Slider(
                label="Количество изображений",
                minimum=1,
                maximum=2,
                step=1,
                value=1,
            )
        with gr.Row():
            prior_guidance_scale = gr.Slider(
                label="Prior Guidance Scale",
                minimum=0,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            prior_num_inference_steps = gr.Slider(
                label="Prior Inference Steps",
                minimum=10,
                maximum=30,
                step=1,
                value=20,
            )

            decoder_guidance_scale = gr.Slider(
                label="Decoder Guidance Scale",
                minimum=0,
                maximum=0,
                step=0.1,
                value=0.0,
            )
            decoder_num_inference_steps = gr.Slider(
                label="Decoder Inference Steps",
                minimum=4,
                maximum=12,
                step=1,
                value=10,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    inputs = [
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            prior_num_inference_steps,
            # prior_timesteps,
            prior_guidance_scale,
            decoder_num_inference_steps,
            # decoder_timesteps,
            decoder_guidance_scale,
            num_images_per_prompt,
    ]
    gr.on(
        triggers=[prompt.submit, negative_prompt.submit, run_button.click],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name="run",
    )
    
with gr.Blocks(css="style.css") as demo_with_history:
    with gr.Tab("App"):
        demo.render()

if __name__ == "__main__":
    launch_args = {
        'inbrowser': args.inbrowser,
        'share': args.share,
        'server_port' : args.server_port,
    }
    demo_with_history.launch(**launch_args)