Update README.md
Browse files
README.md
CHANGED
@@ -52,11 +52,6 @@ outputs = model(**inputs)
|
|
52 |
| Layers | 6 |
|
53 |
| Attention Heads | 6 |
|
54 |
|
55 |
-
### Intended Use
|
56 |
-
|
57 |
-
**Intended Use Cases:** ProkBERT-mini-k6-s1 is intended for bioinformatics researchers and practitioners focusing on genomic sequence analysis, including:
|
58 |
-
- sequence classification tasks
|
59 |
-
- Exploration of genomic patterns and features
|
60 |
|
61 |
## Segmentation and Tokenization in ProkBERT Models
|
62 |
|
@@ -140,7 +135,17 @@ except ImportError:
|
|
140 |
| iPromoter-BnCNN | 0.55 | 0.27 | **0.99** | 0.18 |
|
141 |
| MULTiPly | 0.54 | 0.19 | 0.92 | 0.22 |
|
142 |
|
143 |
-
*The ProkBERT family models exhibit remarkably consistent performance across the metrics assessed. With respect to accuracy, all three tools achieve an impressive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
|
146 |
|
|
|
52 |
| Layers | 6 |
|
53 |
| Attention Heads | 6 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
## Segmentation and Tokenization in ProkBERT Models
|
57 |
|
|
|
135 |
| iPromoter-BnCNN | 0.55 | 0.27 | **0.99** | 0.18 |
|
136 |
| MULTiPly | 0.54 | 0.19 | 0.92 | 0.22 |
|
137 |
|
138 |
+
*The ProkBERT family models exhibit remarkably consistent performance across the metrics assessed. With respect to accuracy, all three tools achieve an impressive*
|
139 |
+
|
140 |
+
| Metric | ProkBERT-mini | ProkBERT-mini-c | ProkBERT-mini-long | Promotech | Sigma70Pred | iPromoter-BnCNN | MULTiPly |
|
141 |
+
|--------------|---------------|-----------------|--------------------|-----------|-------------|-----------------|----------|
|
142 |
+
| Accuracy | 0.81 | 0.79 | 0.81 | 0.61 | 0.62 | 0.61 | 0.58 |
|
143 |
+
| F1 | 0.81 | 0.78 | 0.81 | 0.43 | 0.58 | 0.65 | 0.58 |
|
144 |
+
| MCC | 0.63 | 0.57 | 0.62 | 0.29 | 0.24 | 0.21 | 0.16 |
|
145 |
+
| Sensitivity | 0.81 | 0.75 | 0.79 | 0.29 | 0.52 | 0.66 | 0.57 |
|
146 |
+
| Specificity | 0.82 | 0.82 | 0.83 | 0.93 | 0.71 | 0.55 | 0.59 |
|
147 |
+
|
148 |
+
*Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity.*
|
149 |
|
150 |
|
151 |
|