Update README.md
Browse files
README.md
CHANGED
@@ -20,20 +20,15 @@ tokenization_parameters = {
|
|
20 |
'kmer': 6,
|
21 |
'shift': 1
|
22 |
}
|
23 |
-
|
24 |
# Initialize the tokenizer and model
|
25 |
tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
|
26 |
model = MegatronBertForMaskedLM.from_pretrained("nerualbioinfo/prokbert-mini-k6s2")
|
27 |
-
|
28 |
# Example DNA sequence
|
29 |
sequence = 'ATGTCCGCGGGACCT'
|
30 |
-
|
31 |
# Tokenize the sequence
|
32 |
inputs = tokenizer(sequence, return_tensors="pt")
|
33 |
-
|
34 |
# Ensure that inputs have a batch dimension
|
35 |
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
|
36 |
-
|
37 |
# Generate outputs from the model
|
38 |
outputs = model(**inputs)
|
39 |
```
|
@@ -91,48 +86,6 @@ After segmentation, sequences are encoded into a vector format. The LCA method a
|
|
91 |
4. **Create a Padded/Truncated Array**: Generate a uniform array structure, padding or truncating as necessary.
|
92 |
5. **Save the Array to HDF**: Store the processed data in an HDF (Hierarchical Data Format) file for efficient retrieval and use in training models.
|
93 |
|
94 |
-
```python
|
95 |
-
import pkg_resources
|
96 |
-
from os.path import join
|
97 |
-
from prokbert.sequtils import *
|
98 |
-
|
99 |
-
# Directory for pretraining FASTA files
|
100 |
-
pretraining_fasta_files_dir = pkg_resources.resource_filename('prokbert','data/pretraining')
|
101 |
-
|
102 |
-
# Define segmentation and tokenization parameters
|
103 |
-
segmentation_params = {
|
104 |
-
'max_length': 256, # Split the sequence into segments of length L
|
105 |
-
'min_length': 6,
|
106 |
-
'type': 'random'
|
107 |
-
}
|
108 |
-
tokenization_parameters = {
|
109 |
-
'kmer': 6,
|
110 |
-
'shift': 1,
|
111 |
-
'max_segment_length': 2003,
|
112 |
-
'token_limit': 2000
|
113 |
-
}
|
114 |
-
|
115 |
-
# Setup configuration
|
116 |
-
defconfig = SeqConfig()
|
117 |
-
segmentation_params = defconfig.get_and_set_segmentation_parameters(segmentation_params)
|
118 |
-
tokenization_params = defconfig.get_and_set_tokenization_parameters(tokenization_parameters)
|
119 |
-
|
120 |
-
# Load and segment sequences
|
121 |
-
input_fasta_files = [join(pretraining_fasta_files_dir, file) for file in get_non_empty_files(pretraining_fasta_files_dir)]
|
122 |
-
sequences = load_contigs(input_fasta_files, IsAddHeader=True, adding_reverse_complement=True, AsDataFrame=True, to_uppercase=True, is_add_sequence_id=True)
|
123 |
-
segment_db = segment_sequences(sequences, segmentation_params, AsDataFrame=True)
|
124 |
-
|
125 |
-
# Tokenization
|
126 |
-
tokenized = batch_tokenize_segments_with_ids(segment_db, tokenization_params)
|
127 |
-
expected_max_token = max(len(arr) for arrays in tokenized.values() for arr in arrays)
|
128 |
-
X, torchdb = get_rectangular_array_from_tokenized_dataset(tokenized, tokenization_params['shift'], expected_max_token)
|
129 |
-
|
130 |
-
# Save to HDF file
|
131 |
-
hdf_file = '/tmp/pretraining.h5'
|
132 |
-
save_to_hdf(X, hdf_file, database=torchdb, compression=True)
|
133 |
-
```
|
134 |
-
|
135 |
-
|
136 |
|
137 |
### Installation of ProkBERT (if needed)
|
138 |
|
@@ -177,8 +130,10 @@ Please report any issues with the model or its outputs to the Neural Bioinformat
|
|
177 |
- **Feedback and inquiries:** [[email protected]](mailto:[email protected])
|
178 |
|
179 |
## Reference
|
180 |
-
```
|
181 |
If you use ProkBERT-mini in your research, please cite the following paper:
|
|
|
|
|
|
|
182 |
@ARTICLE{10.3389/fmicb.2023.1331233,
|
183 |
AUTHOR={Ligeti, Balázs and Szepesi-Nagy, István and Bodnár, Babett and Ligeti-Nagy, Noémi and Juhász, János},
|
184 |
TITLE={ProkBERT family: genomic language models for microbiome applications},
|
|
|
20 |
'kmer': 6,
|
21 |
'shift': 1
|
22 |
}
|
|
|
23 |
# Initialize the tokenizer and model
|
24 |
tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
|
25 |
model = MegatronBertForMaskedLM.from_pretrained("nerualbioinfo/prokbert-mini-k6s2")
|
|
|
26 |
# Example DNA sequence
|
27 |
sequence = 'ATGTCCGCGGGACCT'
|
|
|
28 |
# Tokenize the sequence
|
29 |
inputs = tokenizer(sequence, return_tensors="pt")
|
|
|
30 |
# Ensure that inputs have a batch dimension
|
31 |
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
|
|
|
32 |
# Generate outputs from the model
|
33 |
outputs = model(**inputs)
|
34 |
```
|
|
|
86 |
4. **Create a Padded/Truncated Array**: Generate a uniform array structure, padding or truncating as necessary.
|
87 |
5. **Save the Array to HDF**: Store the processed data in an HDF (Hierarchical Data Format) file for efficient retrieval and use in training models.
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
### Installation of ProkBERT (if needed)
|
91 |
|
|
|
130 |
- **Feedback and inquiries:** [[email protected]](mailto:[email protected])
|
131 |
|
132 |
## Reference
|
|
|
133 |
If you use ProkBERT-mini in your research, please cite the following paper:
|
134 |
+
|
135 |
+
|
136 |
+
```
|
137 |
@ARTICLE{10.3389/fmicb.2023.1331233,
|
138 |
AUTHOR={Ligeti, Balázs and Szepesi-Nagy, István and Bodnár, Babett and Ligeti-Nagy, Noémi and Juhász, János},
|
139 |
TITLE={ProkBERT family: genomic language models for microbiome applications},
|