neuralhaven
commited on
Commit
•
2348121
1
Parent(s):
adc011f
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: apple/mobilevit-xx-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: KDRSSC_TinyViT2MobileViT-xx-small
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# KDRSSC_TinyViT2MobileViT-xx-small
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8217
|
24 |
+
- Accuracy: 0.8398
|
25 |
+
- Precision: 0.8409
|
26 |
+
- Recall: 0.8398
|
27 |
+
- F1: 0.8365
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 128
|
48 |
+
- eval_batch_size: 128
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
+
| 2.1113 | 1.0 | 148 | 1.7471 | 0.588 | 0.6313 | 0.588 | 0.5698 |
|
59 |
+
| 1.6003 | 2.0 | 296 | 1.3462 | 0.704 | 0.7133 | 0.704 | 0.6844 |
|
60 |
+
| 1.2989 | 3.0 | 444 | 1.1278 | 0.759 | 0.7716 | 0.759 | 0.7509 |
|
61 |
+
| 1.1115 | 4.0 | 592 | 0.9891 | 0.802 | 0.8022 | 0.802 | 0.7952 |
|
62 |
+
| 0.9978 | 5.0 | 740 | 0.9123 | 0.827 | 0.8413 | 0.827 | 0.8255 |
|
63 |
+
| 0.9274 | 6.0 | 888 | 0.8512 | 0.843 | 0.8445 | 0.843 | 0.8387 |
|
64 |
+
| 0.8748 | 7.0 | 1036 | 0.8210 | 0.842 | 0.8412 | 0.842 | 0.8373 |
|
65 |
+
| 0.8411 | 8.0 | 1184 | 0.7952 | 0.842 | 0.8398 | 0.842 | 0.8365 |
|
66 |
+
| 0.818 | 9.0 | 1332 | 0.7814 | 0.852 | 0.8574 | 0.852 | 0.8489 |
|
67 |
+
| 0.8081 | 10.0 | 1480 | 0.7796 | 0.853 | 0.8591 | 0.853 | 0.8487 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.44.0
|
73 |
+
- Pytorch 2.4.0
|
74 |
+
- Datasets 2.21.0
|
75 |
+
- Tokenizers 0.19.1
|