mgoin commited on
Commit
b198789
·
1 Parent(s): 1404c72

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is a quantized version of https://huggingface.co/laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K that is ready to use with (DeepSparse)[https://github.com/neuralmagic/deepsparse]
2
+
3
+ It achieves 71.1% one-shot accuracy on ImageNet.
4
+
5
+ ## Usage
6
+
7
+ First, install DeepSparse with extensions for CLIP:
8
+ ```
9
+ pip install deepsparse-nightly[clip]>=1.7.0.20231210
10
+ ```
11
+
12
+ Download some test images of a church, a dog, and elephants:
13
+ ```
14
+ wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg
15
+ wget -O buddy.jpeg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/tests/deepsparse/pipelines/sample_images/buddy.jpeg
16
+ wget -O thailand.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolact/sample_images/thailand.jpg
17
+ ```
18
+
19
+ Then make and run a pipeline in Python:
20
+ ```python
21
+ import numpy as np
22
+ from deepsparse import Pipeline
23
+ from deepsparse.clip import (
24
+ CLIPTextInput,
25
+ CLIPVisualInput,
26
+ CLIPZeroShotInput
27
+ )
28
+
29
+ def new_process_inputs(self, inputs: CLIPTextInput):
30
+ if not isinstance(inputs.text, list):
31
+ inputs.text = [inputs.text]
32
+ if not isinstance(inputs.text[0], str):
33
+ return inputs.text
34
+ tokens = [np.array(t).astype(np.int32) for t in self.tokenizer(inputs.text)]
35
+ tokens = np.stack(tokens, axis=0)
36
+ tokens_lengths = np.array(tokens.shape[0] * [tokens.shape[1] - 1])
37
+ return [tokens, tokens_lengths]
38
+
39
+ # This overrides the process_inputs function globally for all CLIPTextPipeline classes,
40
+ # so when we make a zeroshot pipeline later that uses this class, it will use this edit!
41
+ CLIPTextPipeline.process_inputs = new_process_inputs
42
+
43
+ possible_classes = ["ice cream", "an elephant", "a dog", "a building", "a church"]
44
+ images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"]
45
+
46
+ pipeline = Pipeline.create(task="clip_zeroshot", visual_model_path="visual.onnx", text_model_path="textual.onnx")
47
+
48
+ pipeline_input = CLIPZeroShotInput(
49
+ image=CLIPVisualInput(images=images),
50
+ text=CLIPTextInput(text=possible_classes),
51
+ )
52
+
53
+ output = pipeline(pipeline_input).text_scores
54
+ for i in range(len(output)):
55
+ prediction = possible_classes[np.argmax(output[i])]
56
+ print(f"Image {images[i]} is a picture of {prediction}")
57
+
58
+ """
59
+ Image basilica.jpg is a picture of a church
60
+ Image buddy.jpeg is a picture of a dog
61
+ Image thailand.jpg is a picture of an elephant
62
+ """
63
+ ```