--- base_model: meta-llama/Llama-2-7b-hf inference: true model_type: llama datasets: - cerebras/SlimPajama-627B tags: - sparse --- # Llama-2-7b-pruned70-retrained This repo contains model files for a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) model that has had 70% of the parameters pruned in one-shot with [SparseGPT](https://arxiv.org/abs/2301.00774), then retrained by [Cerebras](https://huggingface.co/cerebras) with XXB [UPDATE] tokens from SlimPajama while maintaining sparsity. **Authors**: Neural Magic, Cerebras ## Usage Below we share some code snippets on how to get quickly started with running the model. ### Sparse Transfer You can adapt pruned large language models (LLMs) to new domains and tasks using sparse transfer learning. By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer). ### Running the model This model has not been fine-tuned for instruction-following but may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse). ```python # pip install transformers accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained") model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ## Evaluation Benchmark Results Model evaluation metrics and results. [UPDATE] | Benchmark | Metric | Llama-2-7b | Llama-2-7b-pruned70-retrained | |------------------------------------------------|---------------|-------------|-------------------------------| | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx | | [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx | ## Model Training Details [UPDATE] ## Help For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)