Eldar Kurtic
commited on
Commit
·
9064e71
1
Parent(s):
8f9fd99
add readme
Browse files
README.md
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- pt
|
11 |
+
- hi
|
12 |
+
- es
|
13 |
+
- th
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
license: llama3.2
|
16 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
17 |
+
---
|
18 |
+
|
19 |
+
# Llama-3.2-3B-Instruct-FP8-dynamic
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Meta-Llama-3.2
|
23 |
+
- **Input:** Text
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP8
|
27 |
+
- **Activation quantization:** FP8
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), this models is intended for assistant-like chat.
|
29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
+
- **Release Date:** 9/25/2024
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **License(s):** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE)
|
33 |
+
- **Model Developers:** Neural Magic
|
34 |
+
|
35 |
+
Quantized version of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).
|
36 |
+
It achieves an average score of 50.88 on a subset of task from the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 51.70.
|
37 |
+
|
38 |
+
### Model Optimizations
|
39 |
+
|
40 |
+
This model was obtained by quantizing the weights and activations of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) to FP8 data type, ready for inference with vLLM built from source.
|
41 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
42 |
+
|
43 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
|
44 |
+
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
|
45 |
+
|
46 |
+
## Deployment
|
47 |
+
|
48 |
+
### Use with vLLM
|
49 |
+
|
50 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
51 |
+
|
52 |
+
```python
|
53 |
+
from vllm import LLM, SamplingParams
|
54 |
+
from transformers import AutoTokenizer
|
55 |
+
|
56 |
+
model_id = "neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic"
|
57 |
+
|
58 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
+
|
62 |
+
messages = [
|
63 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
64 |
+
{"role": "user", "content": "Who are you?"},
|
65 |
+
]
|
66 |
+
|
67 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
68 |
+
|
69 |
+
llm = LLM(model=model_id)
|
70 |
+
|
71 |
+
outputs = llm.generate(prompts, sampling_params)
|
72 |
+
|
73 |
+
generated_text = outputs[0].outputs[0].text
|
74 |
+
print(generated_text)
|
75 |
+
```
|
76 |
+
|
77 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
78 |
+
|
79 |
+
## Creation
|
80 |
+
|
81 |
+
This model was created by applying [LLM Compressor](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
|
82 |
+
|
83 |
+
```python
|
84 |
+
import torch
|
85 |
+
|
86 |
+
from transformers import AutoTokenizer
|
87 |
+
|
88 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
89 |
+
from llmcompressor.transformers.compression.helpers import ( # noqa
|
90 |
+
calculate_offload_device_map,
|
91 |
+
custom_offload_device_map,
|
92 |
+
)
|
93 |
+
|
94 |
+
recipe = """
|
95 |
+
quant_stage:
|
96 |
+
quant_modifiers:
|
97 |
+
QuantizationModifier:
|
98 |
+
ignore: ["lm_head"]
|
99 |
+
config_groups:
|
100 |
+
group_0:
|
101 |
+
weights:
|
102 |
+
num_bits: 8
|
103 |
+
type: float
|
104 |
+
strategy: channel
|
105 |
+
dynamic: false
|
106 |
+
symmetric: true
|
107 |
+
input_activations:
|
108 |
+
num_bits: 8
|
109 |
+
type: float
|
110 |
+
strategy: token
|
111 |
+
dynamic: true
|
112 |
+
symmetric: true
|
113 |
+
targets: ["Linear"]
|
114 |
+
"""
|
115 |
+
|
116 |
+
model_stub = "meta-llama/Llama-3.2-3B-Instruct"
|
117 |
+
model_name = model_stub.split("/")[-1]
|
118 |
+
|
119 |
+
device_map = calculate_offload_device_map(
|
120 |
+
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
|
121 |
+
)
|
122 |
+
|
123 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
124 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
125 |
+
)
|
126 |
+
|
127 |
+
output_dir = f"./{model_name}-FP8-dynamic"
|
128 |
+
|
129 |
+
oneshot(
|
130 |
+
model=model,
|
131 |
+
recipe=recipe,
|
132 |
+
output_dir=output_dir,
|
133 |
+
save_compressed=True,
|
134 |
+
tokenizer=AutoTokenizer.from_pretrained(model_stub),
|
135 |
+
)
|
136 |
+
```
|
137 |
+
|
138 |
+
## Evaluation
|
139 |
+
|
140 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, and Winogrande.
|
141 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
142 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
143 |
+
|
144 |
+
### Accuracy
|
145 |
+
|
146 |
+
#### Open LLM Leaderboard evaluation scores
|
147 |
+
<table>
|
148 |
+
<tr>
|
149 |
+
<td><strong>Benchmark</strong>
|
150 |
+
</td>
|
151 |
+
<td><strong>Llama-3.2-3B-Instruct </strong>
|
152 |
+
</td>
|
153 |
+
<td><strong>Llama-3.2-3B-Instruct-FP8-dynamic (this model)</strong>
|
154 |
+
</td>
|
155 |
+
<td><strong>Recovery</strong>
|
156 |
+
</td>
|
157 |
+
</tr>
|
158 |
+
<tr>
|
159 |
+
<td>MMLU-cot (0-shot)
|
160 |
+
</td>
|
161 |
+
<td>55.22
|
162 |
+
</td>
|
163 |
+
<td>55.28
|
164 |
+
</td>
|
165 |
+
<td>100.1%
|
166 |
+
</td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>ARC Challenge (0-shot)
|
170 |
+
</td>
|
171 |
+
<td>77.39
|
172 |
+
</td>
|
173 |
+
<td>76.62
|
174 |
+
</td>
|
175 |
+
<td>99.0%
|
176 |
+
</td>
|
177 |
+
</tr>
|
178 |
+
<tr>
|
179 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
180 |
+
</td>
|
181 |
+
<td>77.56
|
182 |
+
</td>
|
183 |
+
<td>76.12
|
184 |
+
</td>
|
185 |
+
<td>98.1%
|
186 |
+
</td>
|
187 |
+
</tr>
|
188 |
+
<tr>
|
189 |
+
<td>Winogrande (5-shot)
|
190 |
+
</td>
|
191 |
+
<td>70.2
|
192 |
+
</td>
|
193 |
+
<td>69.3
|
194 |
+
</td>
|
195 |
+
<td>98.7%
|
196 |
+
</td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td><strong>Average</strong>
|
200 |
+
</td>
|
201 |
+
<td><strong>70.09</strong>
|
202 |
+
</td>
|
203 |
+
<td><strong>69.33</strong>
|
204 |
+
</td>
|
205 |
+
<td><strong>98.92%</strong>
|
206 |
+
</td>
|
207 |
+
</tr>
|
208 |
+
</table>
|
209 |
+
|
210 |
+
### Reproduction
|
211 |
+
|
212 |
+
The results were obtained using the following commands:
|
213 |
+
|
214 |
+
|
215 |
+
#### MMLU-cot
|
216 |
+
```
|
217 |
+
lm_eval \
|
218 |
+
--model vllm \
|
219 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
220 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
221 |
+
--apply_chat_template \
|
222 |
+
--num_fewshot 0 \
|
223 |
+
--batch_size auto
|
224 |
+
```
|
225 |
+
|
226 |
+
#### ARC-Challenge
|
227 |
+
```
|
228 |
+
lm_eval \
|
229 |
+
--model vllm \
|
230 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
231 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
232 |
+
--apply_chat_template \
|
233 |
+
--num_fewshot 0 \
|
234 |
+
--batch_size auto
|
235 |
+
```
|
236 |
+
|
237 |
+
#### GSM-8K
|
238 |
+
```
|
239 |
+
lm_eval \
|
240 |
+
--model vllm \
|
241 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
242 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
243 |
+
--apply_chat_template \
|
244 |
+
--fewshot_as_multiturn \
|
245 |
+
--num_fewshot 8 \
|
246 |
+
--batch_size auto
|
247 |
+
```
|
248 |
+
|
249 |
+
#### Winogrande
|
250 |
+
```
|
251 |
+
lm_eval \
|
252 |
+
--model vllm \
|
253 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
254 |
+
--tasks winogrande \
|
255 |
+
--num_fewshot 5 \
|
256 |
+
--batch_size auto
|
257 |
+
```
|
258 |
+
|