alexmarques's picture
Update README.md
5079e66 verified
---
language:
- en
pipeline_tag: text-generation
license: apache-2.0
license_link: https://www.apache.org/licenses/LICENSE-2.0
---
# Mistral-7B-Instruct-v0.3-quantized.w8a16
## Model Overview
- **Model Architecture:** Mistral
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/10/2024
- **Version:** 1.0
- **License(s):** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Model Developers:** Neural Magic
Quantized version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
It achieves an average score of 66.43 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 66.74.
### Model Optimizations
This model was obtained by quantizing the weights of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) to INT8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 1% damping factor and 256 sequences of 8,192 random tokens.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
### Use with transformers
This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
The following example contemplates how the model can be used using the `generate()` function.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Creation
This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import random
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
num_samples = 256
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
max_token_id = len(tokenizer.get_vocab()) - 1
examples = []
for _ in range(num_samples):
examples.append(
{
"input_ids": [random.randint(0, max_token_id) for _ in range(max_seq_len)],
"attention_mask": max_seq_len*[1],
}
)
quantize_config = BaseQuantizeConfig(
bits=8,
group_size=-1,
desc_act=False,
model_file_base_name="model",
damp_percent=0.01,
)
model = AutoGPTQForCausalLM.from_pretrained(
model_id,
quantize_config,
device_map="auto",
)
model.quantize(examples)
model.save_pretrained("Mistral-7B-Instruct-v0.3-quantized.w8a16")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Mistral-7B-Instruct-v0.3 </strong>
</td>
<td><strong>Mistral-7B-Instruct-v0.3-quantized.w8a16(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>61.84
</td>
<td>62.06
</td>
<td>100.3%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>63.74
</td>
<td>64.26
</td>
<td>100.8%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>49.28
</td>
<td>50.42
</td>
<td>102.3%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>84.84
</td>
<td>84.78
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>79.56
</td>
<td>79.48
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>59.33
</td>
<td>59.48
</td>
<td>100.3%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>66.43</strong>
</td>
<td><strong>66.74</strong>
</td>
<td><strong>100.5%</strong>
</td>
</tr>
</table>