robertgshaw2
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: teknium/OpenHermes-2.5-Mistral-7B
|
3 |
+
inference: true
|
4 |
+
model_type: mistral
|
5 |
+
quantized_by: robertgshaw2
|
6 |
+
tags:
|
7 |
+
- nm-vllm
|
8 |
+
- marlin
|
9 |
+
- int4
|
10 |
+
---
|
11 |
+
|
12 |
+
## zephyr-7b-beta-marlin
|
13 |
+
This repo contains model files for [OpenHermes-2.5-Mistral-7b](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) optimized for [nm-vllm](https://github.com/neuralmagic/nm-vllm), a high-throughput serving engine for compressed LLMs.
|
14 |
+
|
15 |
+
This model was quantized with [GPTQ](https://arxiv.org/abs/2210.17323) and saved in the Marlin format for efficient 4-bit inference. Marlin is a highly optimized inference kernel for 4 bit models.
|
16 |
+
|
17 |
+
## Inference
|
18 |
+
Install [nm-vllm](https://github.com/neuralmagic/nm-vllm) for fast inference and low memory-usage:
|
19 |
+
```bash
|
20 |
+
pip install nm-vllm[sparse]
|
21 |
+
```
|
22 |
+
|
23 |
+
Run in a Python pipeline for local inference:
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer
|
26 |
+
from vllm import LLM, SamplingParams
|
27 |
+
|
28 |
+
model_id = "neuralmagic/OpenHermes-2.5-Mistral-7B-marlin"
|
29 |
+
model = LLM(model_id)
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
32 |
+
messages = [
|
33 |
+
{"role": "user", "content": "What is synthetic data in machine learning?"},
|
34 |
+
]
|
35 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
36 |
+
sampling_params = SamplingParams(max_tokens=200)
|
37 |
+
outputs = model.generate(formatted_prompt, sampling_params=sampling_params)
|
38 |
+
print(outputs[0].outputs[0].text)
|
39 |
+
|
40 |
+
"""
|
41 |
+
Sure! Here's a simple recipe for banana bread:
|
42 |
+
|
43 |
+
Ingredients:
|
44 |
+
- 3-4 ripe bananas,mashed
|
45 |
+
- 1 large egg
|
46 |
+
- 2 Tbsp. Flour
|
47 |
+
- 2 tsp. Baking powder
|
48 |
+
- 1 tsp. Baking soda
|
49 |
+
- 1/2 tsp. Ground cinnamon
|
50 |
+
- 1/4 tsp. Salt
|
51 |
+
- 1/2 cup butter, melted
|
52 |
+
- 3 Cups All-purpose flour
|
53 |
+
- 1/2 tsp. Ground cinnamon
|
54 |
+
|
55 |
+
Instructions:
|
56 |
+
|
57 |
+
1. Preheat your oven to 350 F (175 C).
|
58 |
+
"""
|
59 |
+
```
|
60 |
+
|
61 |
+
## Quantization
|
62 |
+
For details on how this model was quantized and converted to marlin format, run the `quantization/apply_gptq_save_marlin.py` script:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
pip install -r quantization/requirements.txt
|
66 |
+
python3 quantization/apply_gptq_save_marlin.py --model-id teknium/OpenHermes-2.5-Mistral-7B --save-dir ./openhermes-marlin
|
67 |
+
```
|
68 |
+
|
69 |
+
## Slack
|
70 |
+
|
71 |
+
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|