zeroshot commited on
Commit
3b86943
·
1 Parent(s): 1da2136

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +535 -0
README.md CHANGED
@@ -50,6 +50,62 @@ model-index:
50
  value: 48.214
51
  - type: f1
52
  value: 47.57084372829096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  - task:
54
  type: Classification
55
  dataset:
@@ -63,6 +119,28 @@ model-index:
63
  value: 86.35064935064935
64
  - type: f1
65
  value: 86.32782396028989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  - task:
67
  type: Classification
68
  dataset:
@@ -143,6 +221,342 @@ model-index:
143
  value: 78.9340954942838
144
  - type: f1
145
  value: 79.04036413238218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  - task:
147
  type: Classification
148
  dataset:
@@ -171,6 +585,127 @@ model-index:
171
  value: 59.67176004527447
172
  - type: f1
173
  value: 59.97320225890037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  ---
175
  This is the quantized (INT8) ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization.
176
 
 
50
  value: 48.214
51
  - type: f1
52
  value: 47.57084372829096
53
+ - task:
54
+ type: Clustering
55
+ dataset:
56
+ type: mteb/arxiv-clustering-p2p
57
+ name: MTEB ArxivClusteringP2P
58
+ config: default
59
+ split: test
60
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
61
+ metrics:
62
+ - type: v_measure
63
+ value: 48.499816497755646
64
+ - task:
65
+ type: Clustering
66
+ dataset:
67
+ type: mteb/arxiv-clustering-s2s
68
+ name: MTEB ArxivClusteringS2S
69
+ config: default
70
+ split: test
71
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
72
+ metrics:
73
+ - type: v_measure
74
+ value: 42.006939120636034
75
+ - task:
76
+ type: Reranking
77
+ dataset:
78
+ type: mteb/askubuntudupquestions-reranking
79
+ name: MTEB AskUbuntuDupQuestions
80
+ config: default
81
+ split: test
82
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
83
+ metrics:
84
+ - type: map
85
+ value: 62.390343953329875
86
+ - type: mrr
87
+ value: 75.69922613551422
88
+ - task:
89
+ type: STS
90
+ dataset:
91
+ type: mteb/biosses-sts
92
+ name: MTEB BIOSSES
93
+ config: default
94
+ split: test
95
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
96
+ metrics:
97
+ - type: cos_sim_pearson
98
+ value: 89.03408553833623
99
+ - type: cos_sim_spearman
100
+ value: 86.71221676053791
101
+ - type: euclidean_pearson
102
+ value: 87.81477796215844
103
+ - type: euclidean_spearman
104
+ value: 87.28994076774481
105
+ - type: manhattan_pearson
106
+ value: 87.76204756059836
107
+ - type: manhattan_spearman
108
+ value: 87.1971675695072
109
  - task:
110
  type: Classification
111
  dataset:
 
119
  value: 86.35064935064935
120
  - type: f1
121
  value: 86.32782396028989
122
+ - task:
123
+ type: Clustering
124
+ dataset:
125
+ type: mteb/biorxiv-clustering-p2p
126
+ name: MTEB BiorxivClusteringP2P
127
+ config: default
128
+ split: test
129
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
130
+ metrics:
131
+ - type: v_measure
132
+ value: 39.299558776859485
133
+ - task:
134
+ type: Clustering
135
+ dataset:
136
+ type: mteb/biorxiv-clustering-s2s
137
+ name: MTEB BiorxivClusteringS2S
138
+ config: default
139
+ split: test
140
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
141
+ metrics:
142
+ - type: v_measure
143
+ value: 35.64603198816062
144
  - task:
145
  type: Classification
146
  dataset:
 
221
  value: 78.9340954942838
222
  - type: f1
223
  value: 79.04036413238218
224
+ - task:
225
+ type: Clustering
226
+ dataset:
227
+ type: mteb/medrxiv-clustering-p2p
228
+ name: MTEB MedrxivClusteringP2P
229
+ config: default
230
+ split: test
231
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
232
+ metrics:
233
+ - type: v_measure
234
+ value: 32.80025982143821
235
+ - task:
236
+ type: Clustering
237
+ dataset:
238
+ type: mteb/medrxiv-clustering-s2s
239
+ name: MTEB MedrxivClusteringS2S
240
+ config: default
241
+ split: test
242
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
243
+ metrics:
244
+ - type: v_measure
245
+ value: 30.956464446009623
246
+ - task:
247
+ type: Clustering
248
+ dataset:
249
+ type: mteb/reddit-clustering
250
+ name: MTEB RedditClustering
251
+ config: default
252
+ split: test
253
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
254
+ metrics:
255
+ - type: v_measure
256
+ value: 55.693914682185365
257
+ - task:
258
+ type: Clustering
259
+ dataset:
260
+ type: mteb/reddit-clustering-p2p
261
+ name: MTEB RedditClusteringP2P
262
+ config: default
263
+ split: test
264
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
265
+ metrics:
266
+ - type: v_measure
267
+ value: 62.32723620518647
268
+ - task:
269
+ type: STS
270
+ dataset:
271
+ type: mteb/sickr-sts
272
+ name: MTEB SICK-R
273
+ config: default
274
+ split: test
275
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
276
+ metrics:
277
+ - type: cos_sim_pearson
278
+ value: 84.70275347034692
279
+ - type: cos_sim_spearman
280
+ value: 80.06126639668393
281
+ - type: euclidean_pearson
282
+ value: 82.18370726102707
283
+ - type: euclidean_spearman
284
+ value: 80.05483013524909
285
+ - type: manhattan_pearson
286
+ value: 82.11962032129463
287
+ - type: manhattan_spearman
288
+ value: 79.97174232961949
289
+ - task:
290
+ type: STS
291
+ dataset:
292
+ type: mteb/sts12-sts
293
+ name: MTEB STS12
294
+ config: default
295
+ split: test
296
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
297
+ metrics:
298
+ - type: cos_sim_pearson
299
+ value: 86.08210281025868
300
+ - type: cos_sim_spearman
301
+ value: 77.75002826042643
302
+ - type: euclidean_pearson
303
+ value: 83.06487161944293
304
+ - type: euclidean_spearman
305
+ value: 78.0677956304104
306
+ - type: manhattan_pearson
307
+ value: 83.04321232787379
308
+ - type: manhattan_spearman
309
+ value: 78.09582483148635
310
+ - task:
311
+ type: STS
312
+ dataset:
313
+ type: mteb/sts13-sts
314
+ name: MTEB STS13
315
+ config: default
316
+ split: test
317
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
318
+ metrics:
319
+ - type: cos_sim_pearson
320
+ value: 84.64353592106988
321
+ - type: cos_sim_spearman
322
+ value: 86.07934653140616
323
+ - type: euclidean_pearson
324
+ value: 85.21820182954883
325
+ - type: euclidean_spearman
326
+ value: 86.18828773665395
327
+ - type: manhattan_pearson
328
+ value: 85.12075207905364
329
+ - type: manhattan_spearman
330
+ value: 86.12061116344299
331
+ - task:
332
+ type: STS
333
+ dataset:
334
+ type: mteb/sts14-sts
335
+ name: MTEB STS14
336
+ config: default
337
+ split: test
338
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
339
+ metrics:
340
+ - type: cos_sim_pearson
341
+ value: 84.33571296969136
342
+ - type: cos_sim_spearman
343
+ value: 82.8868213429789
344
+ - type: euclidean_pearson
345
+ value: 83.65476643152161
346
+ - type: euclidean_spearman
347
+ value: 82.76439753890263
348
+ - type: manhattan_pearson
349
+ value: 83.63348951033883
350
+ - type: manhattan_spearman
351
+ value: 82.76176495070241
352
+ - task:
353
+ type: STS
354
+ dataset:
355
+ type: mteb/sts15-sts
356
+ name: MTEB STS15
357
+ config: default
358
+ split: test
359
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
360
+ metrics:
361
+ - type: cos_sim_pearson
362
+ value: 87.6337321089215
363
+ - type: cos_sim_spearman
364
+ value: 88.54453531860615
365
+ - type: euclidean_pearson
366
+ value: 87.68754116644199
367
+ - type: euclidean_spearman
368
+ value: 88.22610830299979
369
+ - type: manhattan_pearson
370
+ value: 87.62214887890859
371
+ - type: manhattan_spearman
372
+ value: 88.14766677391091
373
+ - task:
374
+ type: STS
375
+ dataset:
376
+ type: mteb/sts16-sts
377
+ name: MTEB STS16
378
+ config: default
379
+ split: test
380
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
381
+ metrics:
382
+ - type: cos_sim_pearson
383
+ value: 83.89742747806514
384
+ - type: cos_sim_spearman
385
+ value: 85.76282302560992
386
+ - type: euclidean_pearson
387
+ value: 84.83917251074928
388
+ - type: euclidean_spearman
389
+ value: 85.74354740775905
390
+ - type: manhattan_pearson
391
+ value: 84.91190952448616
392
+ - type: manhattan_spearman
393
+ value: 85.82001542154245
394
+ - task:
395
+ type: STS
396
+ dataset:
397
+ type: mteb/sts17-crosslingual-sts
398
+ name: MTEB STS17 (en-en)
399
+ config: en-en
400
+ split: test
401
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
402
+ metrics:
403
+ - type: cos_sim_pearson
404
+ value: 87.70974342036347
405
+ - type: cos_sim_spearman
406
+ value: 87.82200371351459
407
+ - type: euclidean_pearson
408
+ value: 88.04095125600278
409
+ - type: euclidean_spearman
410
+ value: 87.5069523002544
411
+ - type: manhattan_pearson
412
+ value: 88.03247709799281
413
+ - type: manhattan_spearman
414
+ value: 87.43433979175654
415
+ - task:
416
+ type: STS
417
+ dataset:
418
+ type: mteb/sts22-crosslingual-sts
419
+ name: MTEB STS22 (en)
420
+ config: en
421
+ split: test
422
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
423
+ metrics:
424
+ - type: cos_sim_pearson
425
+ value: 65.0349727703108
426
+ - type: cos_sim_spearman
427
+ value: 65.46090125254047
428
+ - type: euclidean_pearson
429
+ value: 66.75349075443432
430
+ - type: euclidean_spearman
431
+ value: 65.57576680702924
432
+ - type: manhattan_pearson
433
+ value: 66.72598998285412
434
+ - type: manhattan_spearman
435
+ value: 65.63446184311414
436
+ - task:
437
+ type: STS
438
+ dataset:
439
+ type: mteb/stsbenchmark-sts
440
+ name: MTEB STSBenchmark
441
+ config: default
442
+ split: test
443
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
444
+ metrics:
445
+ - type: cos_sim_pearson
446
+ value: 85.18026134463653
447
+ - type: cos_sim_spearman
448
+ value: 86.79430055943524
449
+ - type: euclidean_pearson
450
+ value: 86.2668626122386
451
+ - type: euclidean_spearman
452
+ value: 86.72288498504841
453
+ - type: manhattan_pearson
454
+ value: 86.28615540445857
455
+ - type: manhattan_spearman
456
+ value: 86.7110630606802
457
+ - task:
458
+ type: Reranking
459
+ dataset:
460
+ type: mteb/scidocs-reranking
461
+ name: MTEB SciDocsRR
462
+ config: default
463
+ split: test
464
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
465
+ metrics:
466
+ - type: map
467
+ value: 87.05335415919195
468
+ - type: mrr
469
+ value: 96.27455968142243
470
+ - task:
471
+ type: PairClassification
472
+ dataset:
473
+ type: mteb/sprintduplicatequestions-pairclassification
474
+ name: MTEB SprintDuplicateQuestions
475
+ config: default
476
+ split: test
477
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
478
+ metrics:
479
+ - type: cos_sim_accuracy
480
+ value: 99.84653465346534
481
+ - type: cos_sim_ap
482
+ value: 96.38115549823692
483
+ - type: cos_sim_f1
484
+ value: 92.15983813859383
485
+ - type: cos_sim_precision
486
+ value: 93.24462640736951
487
+ - type: cos_sim_recall
488
+ value: 91.10000000000001
489
+ - type: dot_accuracy
490
+ value: 99.81782178217821
491
+ - type: dot_ap
492
+ value: 95.65732630933346
493
+ - type: dot_f1
494
+ value: 90.68825910931176
495
+ - type: dot_precision
496
+ value: 91.80327868852459
497
+ - type: dot_recall
498
+ value: 89.60000000000001
499
+ - type: euclidean_accuracy
500
+ value: 99.84653465346534
501
+ - type: euclidean_ap
502
+ value: 96.34134720479366
503
+ - type: euclidean_f1
504
+ value: 92.1756688541141
505
+ - type: euclidean_precision
506
+ value: 93.06829765545362
507
+ - type: euclidean_recall
508
+ value: 91.3
509
+ - type: manhattan_accuracy
510
+ value: 99.84356435643565
511
+ - type: manhattan_ap
512
+ value: 96.38165573090185
513
+ - type: manhattan_f1
514
+ value: 92.07622868605819
515
+ - type: manhattan_precision
516
+ value: 92.35412474849095
517
+ - type: manhattan_recall
518
+ value: 91.8
519
+ - type: max_accuracy
520
+ value: 99.84653465346534
521
+ - type: max_ap
522
+ value: 96.38165573090185
523
+ - type: max_f1
524
+ value: 92.1756688541141
525
+ - task:
526
+ type: Clustering
527
+ dataset:
528
+ type: mteb/stackexchange-clustering
529
+ name: MTEB StackExchangeClustering
530
+ config: default
531
+ split: test
532
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
533
+ metrics:
534
+ - type: v_measure
535
+ value: 64.81205738681385
536
+ - task:
537
+ type: Clustering
538
+ dataset:
539
+ type: mteb/stackexchange-clustering-p2p
540
+ name: MTEB StackExchangeClusteringP2P
541
+ config: default
542
+ split: test
543
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
544
+ metrics:
545
+ - type: v_measure
546
+ value: 34.083934029129445
547
+ - task:
548
+ type: Reranking
549
+ dataset:
550
+ type: mteb/stackoverflowdupquestions-reranking
551
+ name: MTEB StackOverflowDupQuestions
552
+ config: default
553
+ split: test
554
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
555
+ metrics:
556
+ - type: map
557
+ value: 54.447346270481376
558
+ - type: mrr
559
+ value: 55.382382119514475
560
  - task:
561
  type: Classification
562
  dataset:
 
585
  value: 59.67176004527447
586
  - type: f1
587
  value: 59.97320225890037
588
+ - task:
589
+ type: Clustering
590
+ dataset:
591
+ type: mteb/twentynewsgroups-clustering
592
+ name: MTEB TwentyNewsgroupsClustering
593
+ config: default
594
+ split: test
595
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
596
+ metrics:
597
+ - type: v_measure
598
+ value: 49.50190094208029
599
+ - task:
600
+ type: PairClassification
601
+ dataset:
602
+ type: mteb/twittersemeval2015-pairclassification
603
+ name: MTEB TwitterSemEval2015
604
+ config: default
605
+ split: test
606
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
607
+ metrics:
608
+ - type: cos_sim_accuracy
609
+ value: 86.70799308577219
610
+ - type: cos_sim_ap
611
+ value: 76.40980707197174
612
+ - type: cos_sim_f1
613
+ value: 70.64264849074976
614
+ - type: cos_sim_precision
615
+ value: 65.56710347943967
616
+ - type: cos_sim_recall
617
+ value: 76.56992084432717
618
+ - type: dot_accuracy
619
+ value: 85.75430649102938
620
+ - type: dot_ap
621
+ value: 72.68783978286282
622
+ - type: dot_f1
623
+ value: 67.56951102588687
624
+ - type: dot_precision
625
+ value: 61.90162494510321
626
+ - type: dot_recall
627
+ value: 74.37994722955145
628
+ - type: euclidean_accuracy
629
+ value: 86.70799308577219
630
+ - type: euclidean_ap
631
+ value: 76.43046769325314
632
+ - type: euclidean_f1
633
+ value: 70.84852905421832
634
+ - type: euclidean_precision
635
+ value: 65.68981064021641
636
+ - type: euclidean_recall
637
+ value: 76.88654353562005
638
+ - type: manhattan_accuracy
639
+ value: 86.70203254455504
640
+ - type: manhattan_ap
641
+ value: 76.39254562413156
642
+ - type: manhattan_f1
643
+ value: 70.86557059961316
644
+ - type: manhattan_precision
645
+ value: 65.39491298527443
646
+ - type: manhattan_recall
647
+ value: 77.33509234828496
648
+ - type: max_accuracy
649
+ value: 86.70799308577219
650
+ - type: max_ap
651
+ value: 76.43046769325314
652
+ - type: max_f1
653
+ value: 70.86557059961316
654
+ - task:
655
+ type: PairClassification
656
+ dataset:
657
+ type: mteb/twitterurlcorpus-pairclassification
658
+ name: MTEB TwitterURLCorpus
659
+ config: default
660
+ split: test
661
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
662
+ metrics:
663
+ - type: cos_sim_accuracy
664
+ value: 88.92381728567548
665
+ - type: cos_sim_ap
666
+ value: 85.92532857788025
667
+ - type: cos_sim_f1
668
+ value: 78.11970128792525
669
+ - type: cos_sim_precision
670
+ value: 73.49806530445998
671
+ - type: cos_sim_recall
672
+ value: 83.3615645210964
673
+ - type: dot_accuracy
674
+ value: 88.28540381107618
675
+ - type: dot_ap
676
+ value: 84.42890126108796
677
+ - type: dot_f1
678
+ value: 76.98401162790698
679
+ - type: dot_precision
680
+ value: 72.89430222956234
681
+ - type: dot_recall
682
+ value: 81.55990144748999
683
+ - type: euclidean_accuracy
684
+ value: 88.95874568246207
685
+ - type: euclidean_ap
686
+ value: 85.88338025133037
687
+ - type: euclidean_f1
688
+ value: 78.14740888593184
689
+ - type: euclidean_precision
690
+ value: 75.15285084601166
691
+ - type: euclidean_recall
692
+ value: 81.3905143209116
693
+ - type: manhattan_accuracy
694
+ value: 88.92769821865176
695
+ - type: manhattan_ap
696
+ value: 85.84824183217555
697
+ - type: manhattan_f1
698
+ value: 77.9830582736965
699
+ - type: manhattan_precision
700
+ value: 74.15972222222223
701
+ - type: manhattan_recall
702
+ value: 82.22205112411457
703
+ - type: max_accuracy
704
+ value: 88.95874568246207
705
+ - type: max_ap
706
+ value: 85.92532857788025
707
+ - type: max_f1
708
+ value: 78.14740888593184
709
  ---
710
  This is the quantized (INT8) ONNX variant of the [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference pipeline and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization.
711