Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,636 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: bge-small-en-v1.5-quant
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: Classification
|
9 |
+
dataset:
|
10 |
+
type: mteb/amazon_counterfactual
|
11 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
12 |
+
config: en
|
13 |
+
split: test
|
14 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
15 |
+
metrics:
|
16 |
+
- type: accuracy
|
17 |
+
value: 74.19402985074626
|
18 |
+
- type: ap
|
19 |
+
value: 37.562368912364036
|
20 |
+
- type: f1
|
21 |
+
value: 68.47046663470138
|
22 |
+
- task:
|
23 |
+
type: Classification
|
24 |
+
dataset:
|
25 |
+
type: mteb/amazon_polarity
|
26 |
+
name: MTEB AmazonPolarityClassification
|
27 |
+
config: default
|
28 |
+
split: test
|
29 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 91.89432499999998
|
33 |
+
- type: ap
|
34 |
+
value: 88.64572979375352
|
35 |
+
- type: f1
|
36 |
+
value: 91.87171177424113
|
37 |
+
- task:
|
38 |
+
type: Classification
|
39 |
+
dataset:
|
40 |
+
type: mteb/amazon_reviews_multi
|
41 |
+
name: MTEB AmazonReviewsClassification (en)
|
42 |
+
config: en
|
43 |
+
split: test
|
44 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 46.71799999999999
|
48 |
+
- type: f1
|
49 |
+
value: 46.25791412217894
|
50 |
+
- task:
|
51 |
+
type: Retrieval
|
52 |
+
dataset:
|
53 |
+
type: arguana
|
54 |
+
name: MTEB ArguAna
|
55 |
+
config: default
|
56 |
+
split: test
|
57 |
+
revision: None
|
58 |
+
metrics:
|
59 |
+
- type: map_at_1
|
60 |
+
value: 34.424
|
61 |
+
- type: map_at_10
|
62 |
+
value: 49.63
|
63 |
+
- type: map_at_100
|
64 |
+
value: 50.477000000000004
|
65 |
+
- type: map_at_1000
|
66 |
+
value: 50.483
|
67 |
+
- type: map_at_3
|
68 |
+
value: 45.389
|
69 |
+
- type: map_at_5
|
70 |
+
value: 47.888999999999996
|
71 |
+
- type: mrr_at_1
|
72 |
+
value: 34.78
|
73 |
+
- type: mrr_at_10
|
74 |
+
value: 49.793
|
75 |
+
- type: mrr_at_100
|
76 |
+
value: 50.632999999999996
|
77 |
+
- type: mrr_at_1000
|
78 |
+
value: 50.638000000000005
|
79 |
+
- type: mrr_at_3
|
80 |
+
value: 45.531
|
81 |
+
- type: mrr_at_5
|
82 |
+
value: 48.010000000000005
|
83 |
+
- type: ndcg_at_1
|
84 |
+
value: 34.424
|
85 |
+
- type: ndcg_at_10
|
86 |
+
value: 57.774
|
87 |
+
- type: ndcg_at_100
|
88 |
+
value: 61.248000000000005
|
89 |
+
- type: ndcg_at_1000
|
90 |
+
value: 61.378
|
91 |
+
- type: ndcg_at_3
|
92 |
+
value: 49.067
|
93 |
+
- type: ndcg_at_5
|
94 |
+
value: 53.561
|
95 |
+
- type: precision_at_1
|
96 |
+
value: 34.424
|
97 |
+
- type: precision_at_10
|
98 |
+
value: 8.364
|
99 |
+
- type: precision_at_100
|
100 |
+
value: 0.985
|
101 |
+
- type: precision_at_1000
|
102 |
+
value: 0.1
|
103 |
+
- type: precision_at_3
|
104 |
+
value: 19.915
|
105 |
+
- type: precision_at_5
|
106 |
+
value: 14.124999999999998
|
107 |
+
- type: recall_at_1
|
108 |
+
value: 34.424
|
109 |
+
- type: recall_at_10
|
110 |
+
value: 83.64200000000001
|
111 |
+
- type: recall_at_100
|
112 |
+
value: 98.506
|
113 |
+
- type: recall_at_1000
|
114 |
+
value: 99.502
|
115 |
+
- type: recall_at_3
|
116 |
+
value: 59.744
|
117 |
+
- type: recall_at_5
|
118 |
+
value: 70.626
|
119 |
+
- task:
|
120 |
+
type: Reranking
|
121 |
+
dataset:
|
122 |
+
type: mteb/askubuntudupquestions-reranking
|
123 |
+
name: MTEB AskUbuntuDupQuestions
|
124 |
+
config: default
|
125 |
+
split: test
|
126 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
127 |
+
metrics:
|
128 |
+
- type: map
|
129 |
+
value: 62.40334669601722
|
130 |
+
- type: mrr
|
131 |
+
value: 75.33175042870333
|
132 |
+
- task:
|
133 |
+
type: STS
|
134 |
+
dataset:
|
135 |
+
type: mteb/biosses-sts
|
136 |
+
name: MTEB BIOSSES
|
137 |
+
config: default
|
138 |
+
split: test
|
139 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
140 |
+
metrics:
|
141 |
+
- type: cos_sim_pearson
|
142 |
+
value: 88.00433892980047
|
143 |
+
- type: cos_sim_spearman
|
144 |
+
value: 86.65558896421105
|
145 |
+
- type: euclidean_pearson
|
146 |
+
value: 85.98927300398377
|
147 |
+
- type: euclidean_spearman
|
148 |
+
value: 86.0905158476729
|
149 |
+
- type: manhattan_pearson
|
150 |
+
value: 86.0272425017433
|
151 |
+
- type: manhattan_spearman
|
152 |
+
value: 85.8929209838941
|
153 |
+
- task:
|
154 |
+
type: Classification
|
155 |
+
dataset:
|
156 |
+
type: mteb/banking77
|
157 |
+
name: MTEB Banking77Classification
|
158 |
+
config: default
|
159 |
+
split: test
|
160 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
161 |
+
metrics:
|
162 |
+
- type: accuracy
|
163 |
+
value: 85.1038961038961
|
164 |
+
- type: f1
|
165 |
+
value: 85.06851570045757
|
166 |
+
- task:
|
167 |
+
type: Classification
|
168 |
+
dataset:
|
169 |
+
type: mteb/emotion
|
170 |
+
name: MTEB EmotionClassification
|
171 |
+
config: default
|
172 |
+
split: test
|
173 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
174 |
+
metrics:
|
175 |
+
- type: accuracy
|
176 |
+
value: 46.845
|
177 |
+
- type: f1
|
178 |
+
value: 41.70045120106269
|
179 |
+
- task:
|
180 |
+
type: Classification
|
181 |
+
dataset:
|
182 |
+
type: mteb/imdb
|
183 |
+
name: MTEB ImdbClassification
|
184 |
+
config: default
|
185 |
+
split: test
|
186 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
187 |
+
metrics:
|
188 |
+
- type: accuracy
|
189 |
+
value: 89.3476
|
190 |
+
- type: ap
|
191 |
+
value: 85.26891728027032
|
192 |
+
- type: f1
|
193 |
+
value: 89.33488973832894
|
194 |
+
- task:
|
195 |
+
type: Classification
|
196 |
+
dataset:
|
197 |
+
type: mteb/mtop_domain
|
198 |
+
name: MTEB MTOPDomainClassification (en)
|
199 |
+
config: en
|
200 |
+
split: test
|
201 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
202 |
+
metrics:
|
203 |
+
- type: accuracy
|
204 |
+
value: 92.67441860465115
|
205 |
+
- type: f1
|
206 |
+
value: 92.48821366022861
|
207 |
+
- task:
|
208 |
+
type: Classification
|
209 |
+
dataset:
|
210 |
+
type: mteb/mtop_intent
|
211 |
+
name: MTEB MTOPIntentClassification (en)
|
212 |
+
config: en
|
213 |
+
split: test
|
214 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
215 |
+
metrics:
|
216 |
+
- type: accuracy
|
217 |
+
value: 74.02872777017784
|
218 |
+
- type: f1
|
219 |
+
value: 57.28822860484337
|
220 |
+
- task:
|
221 |
+
type: Classification
|
222 |
+
dataset:
|
223 |
+
type: mteb/amazon_massive_intent
|
224 |
+
name: MTEB MassiveIntentClassification (en)
|
225 |
+
config: en
|
226 |
+
split: test
|
227 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
228 |
+
metrics:
|
229 |
+
- type: accuracy
|
230 |
+
value: 74.01479488903833
|
231 |
+
- type: f1
|
232 |
+
value: 71.83716204573571
|
233 |
+
- task:
|
234 |
+
type: Classification
|
235 |
+
dataset:
|
236 |
+
type: mteb/amazon_massive_scenario
|
237 |
+
name: MTEB MassiveScenarioClassification (en)
|
238 |
+
config: en
|
239 |
+
split: test
|
240 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
241 |
+
metrics:
|
242 |
+
- type: accuracy
|
243 |
+
value: 77.95897780766644
|
244 |
+
- type: f1
|
245 |
+
value: 77.80380046125542
|
246 |
+
- task:
|
247 |
+
type: STS
|
248 |
+
dataset:
|
249 |
+
type: mteb/sickr-sts
|
250 |
+
name: MTEB SICK-R
|
251 |
+
config: default
|
252 |
+
split: test
|
253 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
254 |
+
metrics:
|
255 |
+
- type: cos_sim_pearson
|
256 |
+
value: 83.86793477948164
|
257 |
+
- type: cos_sim_spearman
|
258 |
+
value: 79.43675709317894
|
259 |
+
- type: euclidean_pearson
|
260 |
+
value: 81.42564463337872
|
261 |
+
- type: euclidean_spearman
|
262 |
+
value: 79.39138648510273
|
263 |
+
- type: manhattan_pearson
|
264 |
+
value: 81.31167449689285
|
265 |
+
- type: manhattan_spearman
|
266 |
+
value: 79.28411420758785
|
267 |
+
- task:
|
268 |
+
type: STS
|
269 |
+
dataset:
|
270 |
+
type: mteb/sts12-sts
|
271 |
+
name: MTEB STS12
|
272 |
+
config: default
|
273 |
+
split: test
|
274 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
275 |
+
metrics:
|
276 |
+
- type: cos_sim_pearson
|
277 |
+
value: 84.43490408077298
|
278 |
+
- type: cos_sim_spearman
|
279 |
+
value: 76.16878340109265
|
280 |
+
- type: euclidean_pearson
|
281 |
+
value: 80.6016219080782
|
282 |
+
- type: euclidean_spearman
|
283 |
+
value: 75.67063072565917
|
284 |
+
- type: manhattan_pearson
|
285 |
+
value: 80.7238920179759
|
286 |
+
- type: manhattan_spearman
|
287 |
+
value: 75.85631683403953
|
288 |
+
- task:
|
289 |
+
type: STS
|
290 |
+
dataset:
|
291 |
+
type: mteb/sts13-sts
|
292 |
+
name: MTEB STS13
|
293 |
+
config: default
|
294 |
+
split: test
|
295 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
296 |
+
metrics:
|
297 |
+
- type: cos_sim_pearson
|
298 |
+
value: 83.03882477767792
|
299 |
+
- type: cos_sim_spearman
|
300 |
+
value: 84.15171505206217
|
301 |
+
- type: euclidean_pearson
|
302 |
+
value: 84.11692506470922
|
303 |
+
- type: euclidean_spearman
|
304 |
+
value: 84.78589046217311
|
305 |
+
- type: manhattan_pearson
|
306 |
+
value: 83.98651139454486
|
307 |
+
- type: manhattan_spearman
|
308 |
+
value: 84.64928563751276
|
309 |
+
- task:
|
310 |
+
type: STS
|
311 |
+
dataset:
|
312 |
+
type: mteb/sts14-sts
|
313 |
+
name: MTEB STS14
|
314 |
+
config: default
|
315 |
+
split: test
|
316 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
317 |
+
metrics:
|
318 |
+
- type: cos_sim_pearson
|
319 |
+
value: 83.11158600428418
|
320 |
+
- type: cos_sim_spearman
|
321 |
+
value: 81.48561519933875
|
322 |
+
- type: euclidean_pearson
|
323 |
+
value: 83.21025907155807
|
324 |
+
- type: euclidean_spearman
|
325 |
+
value: 81.68699235487654
|
326 |
+
- type: manhattan_pearson
|
327 |
+
value: 83.16704771658094
|
328 |
+
- type: manhattan_spearman
|
329 |
+
value: 81.7133110412898
|
330 |
+
- task:
|
331 |
+
type: STS
|
332 |
+
dataset:
|
333 |
+
type: mteb/sts15-sts
|
334 |
+
name: MTEB STS15
|
335 |
+
config: default
|
336 |
+
split: test
|
337 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
338 |
+
metrics:
|
339 |
+
- type: cos_sim_pearson
|
340 |
+
value: 87.1514510686502
|
341 |
+
- type: cos_sim_spearman
|
342 |
+
value: 88.11449450494452
|
343 |
+
- type: euclidean_pearson
|
344 |
+
value: 87.75854949349939
|
345 |
+
- type: euclidean_spearman
|
346 |
+
value: 88.4055148221637
|
347 |
+
- type: manhattan_pearson
|
348 |
+
value: 87.71487828059706
|
349 |
+
- type: manhattan_spearman
|
350 |
+
value: 88.35301381116254
|
351 |
+
- task:
|
352 |
+
type: STS
|
353 |
+
dataset:
|
354 |
+
type: mteb/sts16-sts
|
355 |
+
name: MTEB STS16
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
359 |
+
metrics:
|
360 |
+
- type: cos_sim_pearson
|
361 |
+
value: 83.36838640113687
|
362 |
+
- type: cos_sim_spearman
|
363 |
+
value: 84.98776974283366
|
364 |
+
- type: euclidean_pearson
|
365 |
+
value: 84.0617526427129
|
366 |
+
- type: euclidean_spearman
|
367 |
+
value: 85.04234805662242
|
368 |
+
- type: manhattan_pearson
|
369 |
+
value: 83.87433162971784
|
370 |
+
- type: manhattan_spearman
|
371 |
+
value: 84.87174280390242
|
372 |
+
- task:
|
373 |
+
type: STS
|
374 |
+
dataset:
|
375 |
+
type: mteb/sts17-crosslingual-sts
|
376 |
+
name: MTEB STS17 (en-en)
|
377 |
+
config: en-en
|
378 |
+
split: test
|
379 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
380 |
+
metrics:
|
381 |
+
- type: cos_sim_pearson
|
382 |
+
value: 87.72465270691285
|
383 |
+
- type: cos_sim_spearman
|
384 |
+
value: 87.97672332532184
|
385 |
+
- type: euclidean_pearson
|
386 |
+
value: 88.78764701492182
|
387 |
+
- type: euclidean_spearman
|
388 |
+
value: 88.3509718074474
|
389 |
+
- type: manhattan_pearson
|
390 |
+
value: 88.73024739256215
|
391 |
+
- type: manhattan_spearman
|
392 |
+
value: 88.24149566970154
|
393 |
+
- task:
|
394 |
+
type: STS
|
395 |
+
dataset:
|
396 |
+
type: mteb/sts22-crosslingual-sts
|
397 |
+
name: MTEB STS22 (en)
|
398 |
+
config: en
|
399 |
+
split: test
|
400 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
401 |
+
metrics:
|
402 |
+
- type: cos_sim_pearson
|
403 |
+
value: 64.65195562203238
|
404 |
+
- type: cos_sim_spearman
|
405 |
+
value: 65.0726777678982
|
406 |
+
- type: euclidean_pearson
|
407 |
+
value: 65.84698245675273
|
408 |
+
- type: euclidean_spearman
|
409 |
+
value: 65.13121502162804
|
410 |
+
- type: manhattan_pearson
|
411 |
+
value: 65.96149904857049
|
412 |
+
- type: manhattan_spearman
|
413 |
+
value: 65.39983948112955
|
414 |
+
- task:
|
415 |
+
type: STS
|
416 |
+
dataset:
|
417 |
+
type: mteb/stsbenchmark-sts
|
418 |
+
name: MTEB STSBenchmark
|
419 |
+
config: default
|
420 |
+
split: test
|
421 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
422 |
+
metrics:
|
423 |
+
- type: cos_sim_pearson
|
424 |
+
value: 85.2642818050049
|
425 |
+
- type: cos_sim_spearman
|
426 |
+
value: 86.30633382439257
|
427 |
+
- type: euclidean_pearson
|
428 |
+
value: 86.46510435905633
|
429 |
+
- type: euclidean_spearman
|
430 |
+
value: 86.62650496446
|
431 |
+
- type: manhattan_pearson
|
432 |
+
value: 86.2546330637872
|
433 |
+
- type: manhattan_spearman
|
434 |
+
value: 86.46309860938591
|
435 |
+
- task:
|
436 |
+
type: PairClassification
|
437 |
+
dataset:
|
438 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
439 |
+
name: MTEB SprintDuplicateQuestions
|
440 |
+
config: default
|
441 |
+
split: test
|
442 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
443 |
+
metrics:
|
444 |
+
- type: cos_sim_accuracy
|
445 |
+
value: 99.84257425742574
|
446 |
+
- type: cos_sim_ap
|
447 |
+
value: 96.25445889914926
|
448 |
+
- type: cos_sim_f1
|
449 |
+
value: 92.03805708562844
|
450 |
+
- type: cos_sim_precision
|
451 |
+
value: 92.1765295887663
|
452 |
+
- type: cos_sim_recall
|
453 |
+
value: 91.9
|
454 |
+
- type: dot_accuracy
|
455 |
+
value: 99.83069306930693
|
456 |
+
- type: dot_ap
|
457 |
+
value: 96.00517778550396
|
458 |
+
- type: dot_f1
|
459 |
+
value: 91.27995920448751
|
460 |
+
- type: dot_precision
|
461 |
+
value: 93.1321540062435
|
462 |
+
- type: dot_recall
|
463 |
+
value: 89.5
|
464 |
+
- type: euclidean_accuracy
|
465 |
+
value: 99.84455445544555
|
466 |
+
- type: euclidean_ap
|
467 |
+
value: 96.14761524546034
|
468 |
+
- type: euclidean_f1
|
469 |
+
value: 91.97751660705163
|
470 |
+
- type: euclidean_precision
|
471 |
+
value: 94.04388714733543
|
472 |
+
- type: euclidean_recall
|
473 |
+
value: 90
|
474 |
+
- type: manhattan_accuracy
|
475 |
+
value: 99.84158415841584
|
476 |
+
- type: manhattan_ap
|
477 |
+
value: 96.17014673429341
|
478 |
+
- type: manhattan_f1
|
479 |
+
value: 91.93790686029043
|
480 |
+
- type: manhattan_precision
|
481 |
+
value: 92.07622868605817
|
482 |
+
- type: manhattan_recall
|
483 |
+
value: 91.8
|
484 |
+
- type: max_accuracy
|
485 |
+
value: 99.84455445544555
|
486 |
+
- type: max_ap
|
487 |
+
value: 96.25445889914926
|
488 |
+
- type: max_f1
|
489 |
+
value: 92.03805708562844
|
490 |
+
- task:
|
491 |
+
type: Classification
|
492 |
+
dataset:
|
493 |
+
type: mteb/toxic_conversations_50k
|
494 |
+
name: MTEB ToxicConversationsClassification
|
495 |
+
config: default
|
496 |
+
split: test
|
497 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
498 |
+
metrics:
|
499 |
+
- type: accuracy
|
500 |
+
value: 69.5008
|
501 |
+
- type: ap
|
502 |
+
value: 13.64158304183089
|
503 |
+
- type: f1
|
504 |
+
value: 53.50073331072236
|
505 |
+
- task:
|
506 |
+
type: Classification
|
507 |
+
dataset:
|
508 |
+
type: mteb/tweet_sentiment_extraction
|
509 |
+
name: MTEB TweetSentimentExtractionClassification
|
510 |
+
config: default
|
511 |
+
split: test
|
512 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
513 |
+
metrics:
|
514 |
+
- type: accuracy
|
515 |
+
value: 60.01980758347483
|
516 |
+
- type: f1
|
517 |
+
value: 60.35679678249753
|
518 |
+
- task:
|
519 |
+
type: PairClassification
|
520 |
+
dataset:
|
521 |
+
type: mteb/twittersemeval2015-pairclassification
|
522 |
+
name: MTEB TwitterSemEval2015
|
523 |
+
config: default
|
524 |
+
split: test
|
525 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
526 |
+
metrics:
|
527 |
+
- type: cos_sim_accuracy
|
528 |
+
value: 85.68874053764081
|
529 |
+
- type: cos_sim_ap
|
530 |
+
value: 73.26334732095694
|
531 |
+
- type: cos_sim_f1
|
532 |
+
value: 68.01558376272465
|
533 |
+
- type: cos_sim_precision
|
534 |
+
value: 64.93880489560834
|
535 |
+
- type: cos_sim_recall
|
536 |
+
value: 71.39841688654354
|
537 |
+
- type: dot_accuracy
|
538 |
+
value: 84.71121177802945
|
539 |
+
- type: dot_ap
|
540 |
+
value: 70.33606362522605
|
541 |
+
- type: dot_f1
|
542 |
+
value: 65.0887573964497
|
543 |
+
- type: dot_precision
|
544 |
+
value: 63.50401606425703
|
545 |
+
- type: dot_recall
|
546 |
+
value: 66.75461741424802
|
547 |
+
- type: euclidean_accuracy
|
548 |
+
value: 85.80795136198367
|
549 |
+
- type: euclidean_ap
|
550 |
+
value: 73.43201285001163
|
551 |
+
- type: euclidean_f1
|
552 |
+
value: 68.33166833166834
|
553 |
+
- type: euclidean_precision
|
554 |
+
value: 64.86486486486487
|
555 |
+
- type: euclidean_recall
|
556 |
+
value: 72.18997361477572
|
557 |
+
- type: manhattan_accuracy
|
558 |
+
value: 85.62317458425225
|
559 |
+
- type: manhattan_ap
|
560 |
+
value: 73.21212085536185
|
561 |
+
- type: manhattan_f1
|
562 |
+
value: 68.01681314482232
|
563 |
+
- type: manhattan_precision
|
564 |
+
value: 65.74735286875153
|
565 |
+
- type: manhattan_recall
|
566 |
+
value: 70.44854881266491
|
567 |
+
- type: max_accuracy
|
568 |
+
value: 85.80795136198367
|
569 |
+
- type: max_ap
|
570 |
+
value: 73.43201285001163
|
571 |
+
- type: max_f1
|
572 |
+
value: 68.33166833166834
|
573 |
+
- task:
|
574 |
+
type: PairClassification
|
575 |
+
dataset:
|
576 |
+
type: mteb/twitterurlcorpus-pairclassification
|
577 |
+
name: MTEB TwitterURLCorpus
|
578 |
+
config: default
|
579 |
+
split: test
|
580 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
581 |
+
metrics:
|
582 |
+
- type: cos_sim_accuracy
|
583 |
+
value: 88.81709162882757
|
584 |
+
- type: cos_sim_ap
|
585 |
+
value: 85.63540257309367
|
586 |
+
- type: cos_sim_f1
|
587 |
+
value: 77.9091382258904
|
588 |
+
- type: cos_sim_precision
|
589 |
+
value: 75.32710280373833
|
590 |
+
- type: cos_sim_recall
|
591 |
+
value: 80.67446874037573
|
592 |
+
- type: dot_accuracy
|
593 |
+
value: 88.04478596654636
|
594 |
+
- type: dot_ap
|
595 |
+
value: 84.16371725220706
|
596 |
+
- type: dot_f1
|
597 |
+
value: 76.45949643213666
|
598 |
+
- type: dot_precision
|
599 |
+
value: 73.54719396827655
|
600 |
+
- type: dot_recall
|
601 |
+
value: 79.61194949183862
|
602 |
+
- type: euclidean_accuracy
|
603 |
+
value: 88.9296386851399
|
604 |
+
- type: euclidean_ap
|
605 |
+
value: 85.71894615274715
|
606 |
+
- type: euclidean_f1
|
607 |
+
value: 78.12952767313823
|
608 |
+
- type: euclidean_precision
|
609 |
+
value: 73.7688098495212
|
610 |
+
- type: euclidean_recall
|
611 |
+
value: 83.03818909762857
|
612 |
+
- type: manhattan_accuracy
|
613 |
+
value: 88.89276982186519
|
614 |
+
- type: manhattan_ap
|
615 |
+
value: 85.6838514059479
|
616 |
+
- type: manhattan_f1
|
617 |
+
value: 78.06861875184856
|
618 |
+
- type: manhattan_precision
|
619 |
+
value: 75.09246088193457
|
620 |
+
- type: manhattan_recall
|
621 |
+
value: 81.29042192793348
|
622 |
+
- type: max_accuracy
|
623 |
+
value: 88.9296386851399
|
624 |
+
- type: max_ap
|
625 |
+
value: 85.71894615274715
|
626 |
+
- type: max_f1
|
627 |
+
value: 78.12952767313823
|
628 |
license: mit
|
629 |
+
language:
|
630 |
+
- en
|
631 |
---
|
632 |
+
|
633 |
+
---
|
634 |
+
license: mit
|
635 |
+
---
|
636 |
+
This is the quantized ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export and Neural Magic's [Sparsify](https://account.neuralmagic.com/signin?client_id=d04a5f0c-983d-11ed-88a6-971073f187d3&return_to=https%3A//accounts.neuralmagic.com/v1/connect/authorize%3Fscope%3Dsparsify%3Aread%2Bsparsify%3Awrite%2Buser%3Aapi-key%3Aread%2Buser%3Aprofile%3Awrite%2Buser%3Aprofile%3Aread%26response_type%3Dcode%26code_challenge_method%3DS256%26redirect_uri%3Dhttps%3A//apps.neuralmagic.com/sparsify/oidc/callback.html%26state%3Da9b466a6193c4a7b92cba469408d2495%26client_id%3Dd04a5f0c-983d-11ed-88a6-971073f187d3%26code_challenge%3DP0EkmKBpplTb7crJOGS8YLSwT8UH-BeuD0wuE4JTORQ%26response_mode%3Dquery) for One-Shot INT8 quantization.
|