File size: 729 Bytes
f3ad8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
from typing import Dict, Any
from deepsparse import Pipeline
from time import perf_counter
class EndpointHandler:
def __init__(self, path=""):
self.pipeline = Pipeline.create(task="text-classification", model_path=path, scheduler="sync")
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:obj:): prediction input text
"""
inputs = data.pop("inputs", data)
start = perf_counter()
prediction = self.pipeline(inputs)
end = perf_counter()
latency = end - start
return {
"labels": prediction.labels,
"scores": prediction.scores,
"latency (secs.)": latency
} |