Zephyr 7B β - DeepSparse
This repo contains model files for Zephyr 7B β optimized for DeepSparse, a CPU inference runtime for sparse models.
This model was quantized and pruned with SparseGPT, using SparseML.
Inference
Install DeepSparse LLM for fast inference on CPUs:
pip install deepsparse-nightly[llm]
Run in a Python pipeline:
from deepsparse import TextGeneration
prompt='### Instruction:\nWrite a Perl script that processes a log file and counts the occurrences of different HTTP status codes. The script should accept the log file path as a command-line argument and print the results to the console in descending order of frequency.\n\n### Response:\n'
model = TextGeneration(model_path="hf:neuralmagic/zephyr-7b-beta-pruned50-quant-ds")
print(model(prompt, max_new_tokens=200).generations[0].text)
"""
Here's a Perl script that meets the requirements:
use strict;
use warnings;
sub get_status_code {
my ($status) = ();
my ($match) = qr/\s*\d{3}\s*$/;
return $1 if ($status =~ $match);
}
sub count_occurrences {
my ($file) = shift;
my (%counts) = ();
open my $fh, '<', $file or die "Can't open $file: $!";
while (my $line = <$fh>) {
my ($status) = get_status_code($line);
$counts{$status}++;
}
close $fh;
return \%counts;
}
my ($file) = shift;
my (@codes) = qw(200 300 400 500);
my (@sorted) = ();
foreach my ($status, $count) (@codes, \%{ $status }->value()) {
push @sorted, [$count, $status];
}
foreach my ($code, $freq) (@sorted) {
print "$code\t$freq\n";
}
my ($results) = count_occurrences($file);
my (@sorted) = sort { $b[1] <=> $a[1] } @{$results};
foreach my ($code, $freq) (@sorted) {
print "$code\t$freq\n";
}
"""
Prompt template
### Instruction:\n
{prompt}
### Response:\n
Sparsification
For details on how this model was sparsified, see the recipe.yaml
in this repo and follow the instructions below.
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py HuggingFaceH4/zephyr-7b-beta open_platypus --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
cp deployment/model.onnx deployment/model-orig.onnx
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
Follow the instructions on our One Shot With SparseML page for a step-by-step guide for performing one-shot quantization of large language models.
Slack
For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community
- Downloads last month
- 21
Model tree for neuralmagic/zephyr-7b-beta-pruned50-quant-ds
Base model
mistralai/Mistral-7B-v0.1
Finetuned
HuggingFaceH4/zephyr-7b-beta