|
--- |
|
base_model: HuggingFaceH4/zephyr-7b-beta |
|
inference: false |
|
model_type: mistral |
|
prompt_template: | |
|
### Instruction:\n |
|
{prompt} |
|
### Response:\n |
|
quantized_by: mwitiderrick |
|
tags: |
|
- deepsparse |
|
--- |
|
## Zephyr 7B β - DeepSparse |
|
This repo contains model files for [Zephyr 7B β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. |
|
|
|
This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). |
|
## Inference |
|
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: |
|
```bash |
|
pip install deepsparse-nightly[llm] |
|
``` |
|
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): |
|
```python |
|
from deepsparse import TextGeneration |
|
prompt='### Instruction:\nWrite a Perl script that processes a log file and counts the occurrences of different HTTP status codes. The script should accept the log file path as a command-line argument and print the results to the console in descending order of frequency.\n\n### Response:\n' |
|
model = TextGeneration(model_path="hf:neuralmagic/zephyr-7b-beta-pruned50-quant-ds") |
|
print(model(prompt, max_new_tokens=200).generations[0].text) |
|
""" |
|
Here's a Perl script that meets the requirements: |
|
|
|
use strict; |
|
use warnings; |
|
|
|
sub get_status_code { |
|
my ($status) = (); |
|
my ($match) = qr/\s*\d{3}\s*$/; |
|
return $1 if ($status =~ $match); |
|
} |
|
|
|
sub count_occurrences { |
|
my ($file) = shift; |
|
my (%counts) = (); |
|
open my $fh, '<', $file or die "Can't open $file: $!"; |
|
while (my $line = <$fh>) { |
|
my ($status) = get_status_code($line); |
|
$counts{$status}++; |
|
} |
|
close $fh; |
|
return \%counts; |
|
} |
|
|
|
my ($file) = shift; |
|
my (@codes) = qw(200 300 400 500); |
|
my (@sorted) = (); |
|
|
|
foreach my ($status, $count) (@codes, \%{ $status }->value()) { |
|
push @sorted, [$count, $status]; |
|
} |
|
|
|
foreach my ($code, $freq) (@sorted) { |
|
print "$code\t$freq\n"; |
|
} |
|
|
|
my ($results) = count_occurrences($file); |
|
my (@sorted) = sort { $b[1] <=> $a[1] } @{$results}; |
|
foreach my ($code, $freq) (@sorted) { |
|
print "$code\t$freq\n"; |
|
} |
|
|
|
""" |
|
``` |
|
|
|
## Prompt template |
|
``` |
|
### Instruction:\n |
|
{prompt} |
|
### Response:\n |
|
``` |
|
## Sparsification |
|
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. |
|
|
|
```bash |
|
git clone https://github.com/neuralmagic/sparseml |
|
pip install -e "sparseml[transformers]" |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py HuggingFaceH4/zephyr-7b-beta open_platypus --recipe recipe.yaml --save True |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment |
|
cp deployment/model.onnx deployment/model-orig.onnx |
|
``` |
|
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: |
|
```python |
|
import os |
|
import onnx |
|
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector |
|
input_file = "deployment/model-orig.onnx" |
|
output_file = "deployment/model.onnx" |
|
model = onnx.load(input_file, load_external_data=False) |
|
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) |
|
onnx.save(model, output_file) |
|
print(f"Modified model saved to: {output_file}") |
|
``` |
|
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. |
|
## Slack |
|
|
|
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ) |