Upload
commited on
Commit
·
e66d572
1
Parent(s):
df95ac1
Step 18149
Browse files- README.md +88 -32
- config.json +3 -3
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -1,50 +1,106 @@
|
|
|
|
1 |
---
|
2 |
-
tags: autonlp
|
3 |
language: bn
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
|
13 |
-
- Model ID: 1351187
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
- Accuracy: 0.8412473423104181
|
19 |
-
- Macro F1: 0.8151341402067301
|
20 |
-
- Micro F1: 0.8412473423104181
|
21 |
-
- Weighted F1: 0.8458231431392536
|
22 |
-
- Macro Precision: 0.804355047657178
|
23 |
-
- Micro Precision: 0.8412473423104181
|
24 |
-
- Weighted Precision: 0.8606653801556983
|
25 |
-
- Macro Recall: 0.8328042776824057
|
26 |
-
- Micro Recall: 0.8412473423104181
|
27 |
-
- Weighted Recall: 0.8412473423104181
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
##
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
```
|
41 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-baselines-indic_glue-multi_class_classification-1351187", use_auth_token=True)
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
```
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
|
|
3 |
language: bn
|
4 |
+
tags:
|
5 |
+
- collaborative
|
6 |
+
- bengali
|
7 |
+
- SequenceClassification
|
8 |
+
license: apache-2.0
|
9 |
+
datasets: IndicGlue
|
10 |
+
metrics:
|
11 |
+
- Loss
|
12 |
+
- Accuracy
|
13 |
+
- Precision
|
14 |
+
- Recall
|
15 |
---
|
16 |
|
17 |
+
# sahajBERT News Article Classification
|
18 |
|
19 |
+
## Model description
|
|
|
20 |
|
21 |
+
[sahajBERT](https://huggingface.co/neuropark/sahajBERT) fine-tuned for news article classification using the `sna.bn` split of [IndicGlue](https://huggingface.co/datasets/indic_glue).
|
22 |
|
23 |
+
The model is trained for classifying articles into 5 different classes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
| Label id | Label |
|
26 |
+
|:--------:|:----:|
|
27 |
+
|0 | kolkata|
|
28 |
+
|1 | state|
|
29 |
+
|2 | national|
|
30 |
+
|3 | sports|
|
31 |
+
|4 | entertainment|
|
32 |
+
|5 | international|
|
33 |
|
34 |
+
## Intended uses & limitations
|
35 |
|
36 |
+
#### How to use
|
37 |
|
38 |
+
You can use this model directly with a pipeline for Sequence Classification:
|
39 |
+
```python
|
40 |
+
from transformers import AlbertForSequenceClassification, TextClassificationPipeline, PreTrainedTokenizerFast
|
41 |
|
42 |
+
# Initialize tokenizer
|
43 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NCC")
|
44 |
|
45 |
+
# Initialize model
|
46 |
+
model = AlbertForSequenceClassification.from_pretrained("neuropark/sahajBERT-NCC")
|
47 |
+
|
48 |
+
# Initialize pipeline
|
49 |
+
pipeline = TextClassificationPipeline(tokenizer=tokenizer, model=model)
|
50 |
+
|
51 |
+
raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
|
52 |
+
output = pipeline(raw_text)
|
53 |
```
|
|
|
54 |
|
55 |
+
#### Limitations and bias
|
56 |
+
|
57 |
+
<!-- Provide examples of latent issues and potential remediations. -->
|
58 |
+
WIP
|
59 |
+
|
60 |
+
## Training data
|
61 |
+
|
62 |
+
The model was initialized with pre-trained weights of [sahajBERT](https://huggingface.co/neuropark/sahajBERT) at step 18149 and trained on the `sna.bn` split of [IndicGlue](https://huggingface.co/datasets/indic_glue).
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
Coming soon!
|
67 |
+
<!-- ```bibtex
|
68 |
+
@inproceedings{...,
|
69 |
+
year={2020}
|
70 |
+
}
|
71 |
+
``` -->
|
72 |
+
|
73 |
+
## Eval results
|
74 |
+
|
75 |
+
accuracy: 0.920623671155209
|
76 |
+
|
77 |
+
loss: 0.2719293534755707
|
78 |
+
|
79 |
+
macro_f1: 0.8924089161713425
|
80 |
+
|
81 |
+
macro_precision: 0.891858452957785
|
82 |
+
|
83 |
+
macro_recall: 0.8978917764271065
|
84 |
+
|
85 |
+
micro_f1: 0.920623671155209
|
86 |
+
|
87 |
+
micro_precision: 0.920623671155209
|
88 |
+
|
89 |
+
micro_recall: 0.920623671155209
|
90 |
+
|
91 |
+
weighted_f1: 0.9205158122362266
|
92 |
+
|
93 |
+
weighted_precision: 0.9236142214371135
|
94 |
+
|
95 |
+
weighted_recall: 0.920623671155209
|
96 |
+
|
97 |
|
|
|
98 |
|
99 |
+
### BibTeX entry and citation info
|
100 |
|
101 |
+
Coming soon!
|
102 |
+
<!-- ```bibtex
|
103 |
+
@inproceedings{...,
|
104 |
+
year={2020}
|
105 |
+
}
|
106 |
+
``` -->
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"_num_labels": 6,
|
4 |
"architectures": [
|
5 |
"AlbertForSequenceClassification"
|
@@ -34,7 +34,7 @@
|
|
34 |
"5": 5
|
35 |
},
|
36 |
"layer_norm_eps": 1e-12,
|
37 |
-
"max_length":
|
38 |
"max_position_embeddings": 512,
|
39 |
"model_type": "albert",
|
40 |
"net_structure_type": 0,
|
@@ -45,7 +45,7 @@
|
|
45 |
"pad_token_id": 0,
|
46 |
"padding": "max_length",
|
47 |
"position_embedding_type": "absolute",
|
48 |
-
"transformers_version": "4.
|
49 |
"type_vocab_size": 2,
|
50 |
"vocab_size": 32000
|
51 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "albertvillanova/autonlp-indic_glue-multi_class_classification-218510d-1261095",
|
3 |
"_num_labels": 6,
|
4 |
"architectures": [
|
5 |
"AlbertForSequenceClassification"
|
|
|
34 |
"5": 5
|
35 |
},
|
36 |
"layer_norm_eps": 1e-12,
|
37 |
+
"max_length": 128,
|
38 |
"max_position_embeddings": 512,
|
39 |
"model_type": "albert",
|
40 |
"net_structure_type": 0,
|
|
|
45 |
"pad_token_id": 0,
|
46 |
"padding": "max_length",
|
47 |
"position_embedding_type": "absolute",
|
48 |
+
"transformers_version": "4.6.1",
|
49 |
"type_vocab_size": 2,
|
50 |
"vocab_size": 32000
|
51 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004246afd25a31f2276508f7fbfff866db2c4b3ce7dad33239ad8568d01c3f24
|
3 |
+
size 71800235
|