Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
+
tags:
|
5 |
+
- indobert
|
6 |
+
- indobenchmark
|
7 |
+
- indonlu
|
8 |
+
---
|
9 |
+
---
|
10 |
+
language:
|
11 |
+
- id
|
12 |
+
tags:
|
13 |
+
- indobert
|
14 |
+
- indobenchmark
|
15 |
+
- indonlu
|
16 |
+
---
|
17 |
+
This is the first classification of sentiment analysis for (redacted) task
|
18 |
+
|
19 |
+
### How to import
|
20 |
+
```python
|
21 |
+
import torch
|
22 |
+
from transformers import BertForSequenceClassification, BertTokenizer, BertConfig
|
23 |
+
|
24 |
+
tokenizer = BertTokenizer.from_pretrained("nfhakim/sentiment-analysis-c2")
|
25 |
+
config = BertConfig.from_pretrained("nfhakim/sentiment-analysis-c2")
|
26 |
+
model = BertForSequenceClassification.from_pretrained("nfhakim/sentiment-analysis-c2", config=config)
|
27 |
+
```
|
28 |
+
|
29 |
+
### How to use
|
30 |
+
```python
|
31 |
+
from transformers import pipeline
|
32 |
+
nlp = pipeline("text-classification", model="nfhakim/sentiment-analysis-c2")
|
33 |
+
|
34 |
+
results = nlp("Your input text here")
|
35 |
+
```
|