ngchuchi commited on
Commit
14e6f86
·
verified ·
1 Parent(s): 6551e32

End of training

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.5930434782608696
30
  - name: Recall
31
  type: recall
32
- value: 0.3160333642261353
33
  - name: F1
34
  type: f1
35
- value: 0.4123337363966143
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.942242742935317
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.2703
49
- - Precision: 0.5930
50
- - Recall: 0.3160
51
- - F1: 0.4123
52
- - Accuracy: 0.9422
53
 
54
  ## Model description
55
 
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.1817 | 1.0 | 213 | 0.2754 | 0.5680 | 0.2437 | 0.3411 | 0.9386 |
84
- | 0.1124 | 2.0 | 426 | 0.2703 | 0.5930 | 0.3160 | 0.4123 | 0.9422 |
85
 
86
 
87
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.589018302828619
30
  - name: Recall
31
  type: recall
32
+ value: 0.32808155699721964
33
  - name: F1
34
  type: f1
35
+ value: 0.42142857142857143
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9428840152195289
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.2656
49
+ - Precision: 0.5890
50
+ - Recall: 0.3281
51
+ - F1: 0.4214
52
+ - Accuracy: 0.9429
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.1881 | 1.0 | 213 | 0.2730 | 0.5805 | 0.2873 | 0.3844 | 0.9399 |
84
+ | 0.1084 | 2.0 | 426 | 0.2656 | 0.5890 | 0.3281 | 0.4214 | 0.9429 |
85
 
86
 
87
  ### Framework versions