ngocson2002 commited on
Commit
142b2b1
·
1 Parent(s): 343d807

Update model

Browse files
Files changed (3) hide show
  1. config.json +4 -0
  2. model.safetensors +1 -1
  3. modeling_vivqa.py +3 -3
config.json CHANGED
@@ -5,6 +5,10 @@
5
  "BEiT3ForVietnameseVisualQuestionAnswering"
6
  ],
7
  "attention_dropout": 0.0,
 
 
 
 
8
  "bert_init": false,
9
  "checkpoint_activations": false,
10
  "ddp_rank": 0,
 
5
  "BEiT3ForVietnameseVisualQuestionAnswering"
6
  ],
7
  "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_vivqa.ViVQAConfig",
10
+ "AutoModel": "modeling_vivqa.BEiT3ForVietnameseVisualQuestionAnswering"
11
+ },
12
  "bert_init": false,
13
  "checkpoint_activations": false,
14
  "ddp_rank": 0,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4cb2dc4bd763c7d99faf17e93d2501d1dfcb077a91b3881db447a96bf42fbbcd
3
  size 4911309508
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5d2c605437bfec5f62512ec5bd54851ff49d5f056bdc794cd5e5e4a45b11f4
3
  size 4911309508
modeling_vivqa.py CHANGED
@@ -37,8 +37,8 @@ class Blip2EfficientExtractor(nn.Module):
37
  self.model_blip2.eval()
38
 
39
  # Efficientnet
40
- self.model_efficient = EfficientNet.from_pretrained('efficientnet-b7', advprop=True).to(self.device)
41
- self.model_efficient.eval()
42
  self.pooling1 = nn.AdaptiveAvgPool2d((1, 32))
43
  self.pooling2 = nn.AdaptiveAvgPool2d((1, 768))
44
 
@@ -46,7 +46,7 @@ class Blip2EfficientExtractor(nn.Module):
46
 
47
  global_features = self.model_blip2.extract_features(samples={"image": images}, mode="image").image_embeds
48
 
49
- local_features = self.model_efficient.extract_features(images)
50
  local_features = self.pooling1(local_features)
51
  local_features = local_features.permute(0, 3, 2, 1)
52
  local_features = self.pooling2(local_features)
 
37
  self.model_blip2.eval()
38
 
39
  # Efficientnet
40
+ self.model_efficientnet = EfficientNet.from_pretrained('efficientnet-b7', advprop=True).to(self.device)
41
+ self.model_efficientnet.eval()
42
  self.pooling1 = nn.AdaptiveAvgPool2d((1, 32))
43
  self.pooling2 = nn.AdaptiveAvgPool2d((1, 768))
44
 
 
46
 
47
  global_features = self.model_blip2.extract_features(samples={"image": images}, mode="image").image_embeds
48
 
49
+ local_features = self.model_efficientnet.extract_features(images)
50
  local_features = self.pooling1(local_features)
51
  local_features = local_features.permute(0, 3, 2, 1)
52
  local_features = self.pooling2(local_features)