nguyenb2240 commited on
Commit
2cd161b
1 Parent(s): 9a92334

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,151 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b0-finetuned-segments-sidewalk-oct-22
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-finetuned-segments-sidewalk-oct-22
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1574
21
+ - Mean Iou: 0.1657
22
+ - Mean Accuracy: 0.2143
23
+ - Overall Accuracy: 0.7508
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Flat-road: 0.8145
26
+ - Accuracy Flat-sidewalk: 0.9504
27
+ - Accuracy Flat-crosswalk: 0.0
28
+ - Accuracy Flat-cyclinglane: 0.5828
29
+ - Accuracy Flat-parkingdriveway: 0.0118
30
+ - Accuracy Flat-railtrack: nan
31
+ - Accuracy Flat-curb: 0.0001
32
+ - Accuracy Human-person: 0.0
33
+ - Accuracy Human-rider: 0.0
34
+ - Accuracy Vehicle-car: 0.8895
35
+ - Accuracy Vehicle-truck: 0.0
36
+ - Accuracy Vehicle-bus: 0.0
37
+ - Accuracy Vehicle-tramtrain: 0.0
38
+ - Accuracy Vehicle-motorcycle: 0.0
39
+ - Accuracy Vehicle-bicycle: 0.0
40
+ - Accuracy Vehicle-caravan: 0.0
41
+ - Accuracy Vehicle-cartrailer: 0.0
42
+ - Accuracy Construction-building: 0.8937
43
+ - Accuracy Construction-door: 0.0
44
+ - Accuracy Construction-wall: 0.0389
45
+ - Accuracy Construction-fenceguardrail: 0.0
46
+ - Accuracy Construction-bridge: 0.0
47
+ - Accuracy Construction-tunnel: nan
48
+ - Accuracy Construction-stairs: 0.0
49
+ - Accuracy Object-pole: 0.0
50
+ - Accuracy Object-trafficsign: 0.0
51
+ - Accuracy Object-trafficlight: 0.0
52
+ - Accuracy Nature-vegetation: 0.9244
53
+ - Accuracy Nature-terrain: 0.8287
54
+ - Accuracy Sky: 0.9224
55
+ - Accuracy Void-ground: 0.0
56
+ - Accuracy Void-dynamic: 0.0
57
+ - Accuracy Void-static: 0.0
58
+ - Accuracy Void-unclear: 0.0
59
+ - Iou Unlabeled: nan
60
+ - Iou Flat-road: 0.5381
61
+ - Iou Flat-sidewalk: 0.7939
62
+ - Iou Flat-crosswalk: 0.0
63
+ - Iou Flat-cyclinglane: 0.5124
64
+ - Iou Flat-parkingdriveway: 0.0117
65
+ - Iou Flat-railtrack: nan
66
+ - Iou Flat-curb: 0.0001
67
+ - Iou Human-person: 0.0
68
+ - Iou Human-rider: 0.0
69
+ - Iou Vehicle-car: 0.6117
70
+ - Iou Vehicle-truck: 0.0
71
+ - Iou Vehicle-bus: 0.0
72
+ - Iou Vehicle-tramtrain: 0.0
73
+ - Iou Vehicle-motorcycle: 0.0
74
+ - Iou Vehicle-bicycle: 0.0
75
+ - Iou Vehicle-caravan: 0.0
76
+ - Iou Vehicle-cartrailer: 0.0
77
+ - Iou Construction-building: 0.5570
78
+ - Iou Construction-door: 0.0
79
+ - Iou Construction-wall: 0.0365
80
+ - Iou Construction-fenceguardrail: 0.0
81
+ - Iou Construction-bridge: 0.0
82
+ - Iou Construction-tunnel: nan
83
+ - Iou Construction-stairs: 0.0
84
+ - Iou Object-pole: 0.0
85
+ - Iou Object-trafficsign: 0.0
86
+ - Iou Object-trafficlight: 0.0
87
+ - Iou Nature-vegetation: 0.7504
88
+ - Iou Nature-terrain: 0.6347
89
+ - Iou Sky: 0.8566
90
+ - Iou Void-ground: 0.0
91
+ - Iou Void-dynamic: 0.0
92
+ - Iou Void-static: 0.0
93
+ - Iou Void-unclear: 0.0
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 6e-05
113
+ - train_batch_size: 10
114
+ - eval_batch_size: 10
115
+ - seed: 42
116
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
117
+ - lr_scheduler_type: linear
118
+ - num_epochs: 5
119
+
120
+ ### Training results
121
+
122
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
123
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
124
+ | 2.6835 | 0.25 | 20 | 2.9300 | 0.0679 | 0.1189 | 0.5663 | nan | 0.0864 | 0.9582 | 0.0005 | 0.0171 | 0.0000 | nan | 0.0049 | 0.0042 | 0.0 | 0.8284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7913 | 0.0 | 0.0535 | 0.0 | 0.0 | nan | 0.0029 | 0.0 | 0.0 | 0.0 | 0.9260 | 0.0016 | 0.1138 | 0.0168 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0824 | 0.5815 | 0.0005 | 0.0168 | 0.0000 | 0.0 | 0.0045 | 0.0040 | 0.0 | 0.5349 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4154 | 0.0 | 0.0414 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.5765 | 0.0016 | 0.1137 | 0.0025 | 0.0 | 0.0 | 0.0 |
125
+ | 2.3707 | 0.5 | 40 | 2.1968 | 0.0875 | 0.1387 | 0.6231 | nan | 0.5613 | 0.9361 | 0.0 | 0.0210 | 0.0003 | nan | 0.0019 | 0.0 | 0.0 | 0.7965 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8356 | 0.0 | 0.0281 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9513 | 0.0032 | 0.3006 | 0.0011 | 0.0 | 0.0 | 0.0 | nan | 0.3878 | 0.6646 | 0.0 | 0.0208 | 0.0003 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.5587 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4439 | 0.0 | 0.0249 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5675 | 0.0032 | 0.3003 | 0.0009 | 0.0 | 0.0 | 0.0 |
126
+ | 2.0797 | 0.75 | 60 | 1.9742 | 0.1106 | 0.1579 | 0.6543 | nan | 0.7248 | 0.9240 | 0.0 | 0.0036 | 0.0008 | nan | 0.0000 | 0.0 | 0.0 | 0.8368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8428 | 0.0 | 0.0254 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9498 | 0.0444 | 0.7003 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4154 | 0.7036 | 0.0 | 0.0036 | 0.0008 | nan | 0.0000 | 0.0 | 0.0 | 0.5498 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4939 | 0.0 | 0.0240 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6151 | 0.0426 | 0.6908 | 0.0 | 0.0 | 0.0 | 0.0 |
127
+ | 1.9067 | 1.0 | 80 | 1.7288 | 0.1234 | 0.1699 | 0.6749 | nan | 0.7502 | 0.9269 | 0.0 | 0.0766 | 0.0014 | nan | 0.0000 | 0.0 | 0.0 | 0.8214 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.0111 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9451 | 0.2194 | 0.8139 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4498 | 0.7152 | 0.0 | 0.0761 | 0.0013 | nan | 0.0000 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5007 | 0.0 | 0.0108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6444 | 0.1954 | 0.7863 | 0.0 | 0.0 | 0.0 | 0.0 |
128
+ | 1.6673 | 1.25 | 100 | 1.6680 | 0.1258 | 0.1752 | 0.6789 | nan | 0.8230 | 0.9033 | 0.0 | 0.0493 | 0.0022 | nan | 0.0000 | 0.0 | 0.0 | 0.8676 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8389 | 0.0 | 0.0075 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9609 | 0.2915 | 0.8618 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4254 | 0.7481 | 0.0 | 0.0488 | 0.0022 | nan | 0.0000 | 0.0 | 0.0 | 0.5539 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5266 | 0.0 | 0.0074 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6400 | 0.2581 | 0.8161 | 0.0 | 0.0 | 0.0 | 0.0 |
129
+ | 1.7134 | 1.5 | 120 | 1.5470 | 0.1376 | 0.1870 | 0.6997 | nan | 0.7864 | 0.9287 | 0.0 | 0.1234 | 0.0027 | nan | 0.0000 | 0.0 | 0.0 | 0.8766 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8540 | 0.0 | 0.0060 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9433 | 0.5618 | 0.9008 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4735 | 0.7320 | 0.0 | 0.1216 | 0.0027 | nan | 0.0000 | 0.0 | 0.0 | 0.5599 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5319 | 0.0 | 0.0059 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6897 | 0.4601 | 0.8255 | 0.0 | 0.0 | 0.0 | 0.0 |
130
+ | 1.4384 | 1.75 | 140 | 1.4997 | 0.1458 | 0.1931 | 0.7143 | nan | 0.7973 | 0.9446 | 0.0 | 0.2050 | 0.0025 | nan | 0.0 | 0.0 | 0.0 | 0.8691 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0025 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9304 | 0.6705 | 0.8889 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4842 | 0.7479 | 0.0 | 0.1960 | 0.0025 | nan | 0.0 | 0.0 | 0.0 | 0.5860 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5294 | 0.0 | 0.0025 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7244 | 0.5600 | 0.8314 | 0.0 | 0.0 | 0.0 | 0.0 |
131
+ | 1.4101 | 2.0 | 160 | 1.4325 | 0.1485 | 0.1990 | 0.7167 | nan | 0.8247 | 0.9212 | 0.0 | 0.2410 | 0.0032 | nan | 0.0 | 0.0 | 0.0 | 0.8787 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8896 | 0.0 | 0.0042 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9131 | 0.7902 | 0.9017 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4675 | 0.7648 | 0.0 | 0.2283 | 0.0032 | nan | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5259 | 0.0 | 0.0041 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7388 | 0.6051 | 0.8352 | 0.0 | 0.0 | 0.0 | 0.0 |
132
+ | 1.4613 | 2.25 | 180 | 1.3689 | 0.1522 | 0.2012 | 0.7248 | nan | 0.7783 | 0.9430 | 0.0 | 0.3362 | 0.0037 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8788 | 0.0 | 0.0033 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9201 | 0.7933 | 0.9142 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4951 | 0.7564 | 0.0 | 0.3089 | 0.0037 | nan | 0.0 | 0.0 | 0.0 | 0.5926 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5366 | 0.0 | 0.0033 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7330 | 0.6059 | 0.8348 | 0.0 | 0.0 | 0.0 | 0.0 |
133
+ | 1.1652 | 2.5 | 200 | 1.3458 | 0.1566 | 0.2036 | 0.7323 | nan | 0.7605 | 0.9551 | 0.0 | 0.4259 | 0.0038 | nan | 0.0 | 0.0 | 0.0 | 0.8580 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8902 | 0.0 | 0.0066 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9193 | 0.7943 | 0.9027 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5290 | 0.7548 | 0.0 | 0.3710 | 0.0038 | nan | 0.0 | 0.0 | 0.0 | 0.6064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5270 | 0.0 | 0.0065 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7467 | 0.6256 | 0.8409 | 0.0 | 0.0 | 0.0 | 0.0 |
134
+ | 1.3201 | 2.75 | 220 | 1.2652 | 0.1572 | 0.2057 | 0.7353 | nan | 0.7825 | 0.9559 | 0.0 | 0.4231 | 0.0056 | nan | 0.0000 | 0.0 | 0.0 | 0.8904 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8834 | 0.0 | 0.0122 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9104 | 0.8184 | 0.9014 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5340 | 0.7600 | 0.0 | 0.3872 | 0.0056 | nan | 0.0000 | 0.0 | 0.0 | 0.5909 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5480 | 0.0 | 0.0120 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7383 | 0.6066 | 0.8463 | 0.0 | 0.0 | 0.0 | 0.0 |
135
+ | 1.2234 | 3.0 | 240 | 1.2746 | 0.1594 | 0.2088 | 0.7376 | nan | 0.8409 | 0.9292 | 0.0 | 0.4723 | 0.0054 | nan | 0.0 | 0.0 | 0.0 | 0.8857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8767 | 0.0 | 0.0206 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9318 | 0.7948 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4920 | 0.7916 | 0.0 | 0.4224 | 0.0053 | nan | 0.0 | 0.0 | 0.0 | 0.6083 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5504 | 0.0 | 0.0199 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7396 | 0.6269 | 0.8444 | 0.0 | 0.0 | 0.0 | 0.0 |
136
+ | 1.4557 | 3.25 | 260 | 1.2698 | 0.1584 | 0.2075 | 0.7313 | nan | 0.8659 | 0.9053 | 0.0 | 0.4557 | 0.0059 | nan | 0.0 | 0.0 | 0.0 | 0.8611 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8783 | 0.0 | 0.0141 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9394 | 0.7982 | 0.9172 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4660 | 0.7939 | 0.0 | 0.4017 | 0.0059 | nan | 0.0 | 0.0 | 0.0 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5439 | 0.0 | 0.0137 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7346 | 0.6333 | 0.8478 | 0.0 | 0.0 | 0.0 | 0.0 |
137
+ | 1.2238 | 3.5 | 280 | 1.2213 | 0.1610 | 0.2090 | 0.7427 | nan | 0.8092 | 0.9490 | 0.0 | 0.4971 | 0.0087 | nan | 0.0 | 0.0 | 0.0 | 0.8902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8860 | 0.0 | 0.0207 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9339 | 0.7840 | 0.9103 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5269 | 0.7830 | 0.0 | 0.4531 | 0.0086 | nan | 0.0 | 0.0 | 0.0 | 0.5897 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5528 | 0.0 | 0.0200 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7379 | 0.6292 | 0.8511 | 0.0 | 0.0 | 0.0 | 0.0 |
138
+ | 1.066 | 3.75 | 300 | 1.1935 | 0.1624 | 0.2109 | 0.7442 | nan | 0.8253 | 0.9479 | 0.0 | 0.5012 | 0.0083 | nan | 0.0 | 0.0 | 0.0 | 0.8755 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8923 | 0.0 | 0.0307 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9137 | 0.8313 | 0.9234 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5267 | 0.7849 | 0.0 | 0.4499 | 0.0082 | nan | 0.0 | 0.0 | 0.0 | 0.6217 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5554 | 0.0 | 0.0294 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7463 | 0.6202 | 0.8525 | 0.0 | 0.0 | 0.0 | 0.0 |
139
+ | 1.1549 | 4.0 | 320 | 1.1899 | 0.1632 | 0.2118 | 0.7464 | nan | 0.8334 | 0.9423 | 0.0 | 0.5290 | 0.0073 | nan | 0.0000 | 0.0 | 0.0 | 0.8857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8956 | 0.0 | 0.0194 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9280 | 0.8115 | 0.9247 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5215 | 0.7940 | 0.0 | 0.4730 | 0.0073 | nan | 0.0000 | 0.0 | 0.0 | 0.6143 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5530 | 0.0 | 0.0188 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7488 | 0.6382 | 0.8541 | 0.0 | 0.0 | 0.0 | 0.0 |
140
+ | 1.0461 | 4.25 | 340 | 1.1746 | 0.1643 | 0.2127 | 0.7482 | nan | 0.8171 | 0.9549 | 0.0 | 0.5455 | 0.0078 | nan | 0.0 | 0.0 | 0.0 | 0.8974 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.0387 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9161 | 0.8302 | 0.9174 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5322 | 0.7872 | 0.0 | 0.4917 | 0.0077 | nan | 0.0 | 0.0 | 0.0 | 0.6076 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5651 | 0.0 | 0.0366 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7456 | 0.6282 | 0.8553 | 0.0 | 0.0 | 0.0 | 0.0 |
141
+ | 1.0398 | 4.5 | 360 | 1.1687 | 0.1652 | 0.2128 | 0.7494 | nan | 0.8254 | 0.9501 | 0.0 | 0.5507 | 0.0094 | nan | 0.0000 | 0.0 | 0.0 | 0.8755 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8972 | 0.0 | 0.0341 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9253 | 0.8186 | 0.9232 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5323 | 0.7930 | 0.0 | 0.4922 | 0.0093 | nan | 0.0000 | 0.0 | 0.0 | 0.6277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5531 | 0.0 | 0.0323 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7518 | 0.6382 | 0.8553 | 0.0 | 0.0 | 0.0 | 0.0 |
142
+ | 1.0538 | 4.75 | 380 | 1.1675 | 0.1655 | 0.2135 | 0.7499 | nan | 0.8351 | 0.9458 | 0.0 | 0.5657 | 0.0087 | nan | 0.0000 | 0.0 | 0.0 | 0.8830 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8980 | 0.0 | 0.0322 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9244 | 0.8123 | 0.9262 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5260 | 0.7971 | 0.0 | 0.5002 | 0.0086 | nan | 0.0000 | 0.0 | 0.0 | 0.6214 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5537 | 0.0 | 0.0305 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7554 | 0.6472 | 0.8564 | 0.0 | 0.0 | 0.0 | 0.0 |
143
+ | 1.0232 | 5.0 | 400 | 1.1574 | 0.1657 | 0.2143 | 0.7508 | nan | 0.8145 | 0.9504 | 0.0 | 0.5828 | 0.0118 | nan | 0.0001 | 0.0 | 0.0 | 0.8895 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8937 | 0.0 | 0.0389 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9244 | 0.8287 | 0.9224 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5381 | 0.7939 | 0.0 | 0.5124 | 0.0117 | nan | 0.0001 | 0.0 | 0.0 | 0.6117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5570 | 0.0 | 0.0365 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7504 | 0.6347 | 0.8566 | 0.0 | 0.0 | 0.0 | 0.0 |
144
+
145
+
146
+ ### Framework versions
147
+
148
+ - Transformers 4.42.4
149
+ - Pytorch 2.3.1+cu121
150
+ - Datasets 2.20.0
151
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.42.4"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf89ea7ff980a493db588f67ff47cde212cfd52bcfb567719ea2b8174d33bb5b
3
+ size 14918708
runs/Jul31_13-38-05_fca287a342ce/events.out.tfevents.1722433383.fca287a342ce.420.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:342f1c573d9c46d9a05a203887fddf7c0806b77e020c7483e54bbeb62aad1aec
3
+ size 682644
runs/Jul31_14-32-30_fca287a342ce/events.out.tfevents.1722436438.fca287a342ce.420.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:294f7c77985fa0a9cf6fdf7ec108cf75d7dc59263c7ebf346c03dbd3eac27b95
3
+ size 7260
runs/Jul31_14-34-50_fca287a342ce/events.out.tfevents.1722436495.fca287a342ce.420.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a916bad0ef0e799771d376dc27f4b11f30014d7b9828673bedcfaa714f65885
3
+ size 7260
runs/Jul31_14-37-06_fca287a342ce/events.out.tfevents.1722436637.fca287a342ce.420.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd53e17c3eee91796df22d1306a60da7d2c425d8c5849d24d2ad25f3b3bb8db
3
+ size 191016
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:576cb8c563a7e575f046f1ffa43e379f99228ca068114ca077cef581e1d9892d
3
+ size 5240