nguyennghia0902
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,9 @@ tags:
|
|
6 |
model-index:
|
7 |
- name: nguyennghia0902/electra-small-discriminator_0.0005_32
|
8 |
results: []
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
@@ -13,7 +16,7 @@ probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# nguyennghia0902/electra-small-discriminator_0.0005_32
|
15 |
|
16 |
-
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- Train Loss: 0.9748
|
19 |
- Train End Logits Accuracy: 0.7441
|
@@ -21,25 +24,18 @@ It achieves the following results on the evaluation set:
|
|
21 |
- Validation Loss: 0.5570
|
22 |
- Validation End Logits Accuracy: 0.8476
|
23 |
- Validation Start Logits Accuracy: 0.8405
|
24 |
-
-
|
|
|
|
|
25 |
|
26 |
-
## Model description
|
27 |
-
|
28 |
-
More information needed
|
29 |
-
|
30 |
-
## Intended uses & limitations
|
31 |
-
|
32 |
-
More information needed
|
33 |
-
|
34 |
-
## Training and evaluation data
|
35 |
-
|
36 |
-
More information needed
|
37 |
|
38 |
## Training procedure
|
39 |
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
|
|
|
|
43 |
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
|
44 |
- training_precision: float32
|
45 |
|
@@ -47,16 +43,16 @@ The following hyperparameters were used during training:
|
|
47 |
|
48 |
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|
49 |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
|
50 |
-
| 3.4201 | 0.2553 | 0.2310 | 2.6430 | 0.3942 | 0.3704 |
|
51 |
-
| 2.7588 | 0.3762 | 0.3462 | 2.2758 | 0.4660 | 0.4482 |
|
52 |
-
| 2.4695 | 0.4323 | 0.3983 | 2.0056 | 0.5211 | 0.5006 |
|
53 |
-
| 2.2478 | 0.4745 | 0.4407 | 1.7412 | 0.5763 | 0.5595 |
|
54 |
-
| 2.0321 | 0.5186 | 0.4864 | 1.5126 | 0.6289 | 0.6095 |
|
55 |
-
| 1.8186 | 0.5614 | 0.5319 | 1.2839 | 0.6719 | 0.6647 |
|
56 |
-
| 1.6012 | 0.6060 | 0.5760 | 1.0431 | 0.7322 | 0.7264 |
|
57 |
-
| 1.3677 | 0.6561 | 0.6257 | 0.8193 | 0.7857 | 0.7770 |
|
58 |
-
| 1.1450 | 0.7023 | 0.6765 | 0.6373 | 0.8275 | 0.8215 |
|
59 |
-
| 0.9748 | 0.7441 | 0.7181 | 0.5570 | 0.8476 | 0.8405 |
|
60 |
|
61 |
|
62 |
### Framework versions
|
@@ -64,4 +60,4 @@ The following hyperparameters were used during training:
|
|
64 |
- Transformers 4.39.3
|
65 |
- TensorFlow 2.15.0
|
66 |
- Datasets 2.18.0
|
67 |
-
- Tokenizers 0.15.2
|
|
|
6 |
model-index:
|
7 |
- name: nguyennghia0902/electra-small-discriminator_0.0005_32
|
8 |
results: []
|
9 |
+
language:
|
10 |
+
- vi
|
11 |
+
pipeline_tag: question-answering
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
|
|
16 |
|
17 |
# nguyennghia0902/electra-small-discriminator_0.0005_32
|
18 |
|
19 |
+
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on [Vietnamese dataset](https://www.kaggle.com/datasets/duyminhnguyentran/csc15105).
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Train Loss: 0.9748
|
22 |
- Train End Logits Accuracy: 0.7441
|
|
|
24 |
- Validation Loss: 0.5570
|
25 |
- Validation End Logits Accuracy: 0.8476
|
26 |
- Validation Start Logits Accuracy: 0.8405
|
27 |
+
- Validation Matching Accuracy: 0.7642
|
28 |
+
- Epoch: 10
|
29 |
+
- Time train: 13988,2740111351 seconds ~ 3,8855 hours
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Training procedure
|
33 |
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- Learning rate: 5e-4
|
38 |
+
- Batch size: 32
|
39 |
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
|
40 |
- training_precision: float32
|
41 |
|
|
|
43 |
|
44 |
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|
45 |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
|
46 |
+
| 3.4201 | 0.2553 | 0.2310 | 2.6430 | 0.3942 | 0.3704 | 1 |
|
47 |
+
| 2.7588 | 0.3762 | 0.3462 | 2.2758 | 0.4660 | 0.4482 | 2 |
|
48 |
+
| 2.4695 | 0.4323 | 0.3983 | 2.0056 | 0.5211 | 0.5006 | 3 |
|
49 |
+
| 2.2478 | 0.4745 | 0.4407 | 1.7412 | 0.5763 | 0.5595 | 4 |
|
50 |
+
| 2.0321 | 0.5186 | 0.4864 | 1.5126 | 0.6289 | 0.6095 | 5 |
|
51 |
+
| 1.8186 | 0.5614 | 0.5319 | 1.2839 | 0.6719 | 0.6647 | 6 |
|
52 |
+
| 1.6012 | 0.6060 | 0.5760 | 1.0431 | 0.7322 | 0.7264 | 7 |
|
53 |
+
| 1.3677 | 0.6561 | 0.6257 | 0.8193 | 0.7857 | 0.7770 | 8 |
|
54 |
+
| 1.1450 | 0.7023 | 0.6765 | 0.6373 | 0.8275 | 0.8215 | 9 |
|
55 |
+
| 0.9748 | 0.7441 | 0.7181 | 0.5570 | 0.8476 | 0.8405 | 10 |
|
56 |
|
57 |
|
58 |
### Framework versions
|
|
|
60 |
- Transformers 4.39.3
|
61 |
- TensorFlow 2.15.0
|
62 |
- Datasets 2.18.0
|
63 |
+
- Tokenizers 0.15.2
|