File size: 8,058 Bytes
33da415
c2ebcbc
 
33da415
 
c303265
33da415
 
 
 
 
 
 
c2ebcbc
 
33da415
c2ebcbc
33da415
c89cac9
33da415
c2ebcbc
8361167
33da415
c2ebcbc
33da415
c2ebcbc
 
 
 
 
33da415
c2ebcbc
 
 
c3b632e
c2ebcbc
 
 
 
 
c3b632e
 
 
c2ebcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77300dd
 
c2ebcbc
 
 
 
 
 
 
77300dd
 
c2ebcbc
 
 
 
 
77300dd
 
c2ebcbc
 
 
 
 
77300dd
 
c2ebcbc
 
 
 
 
 
77300dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ebcbc
 
 
15e88dd
c2ebcbc
 
15e88dd
 
c2ebcbc
 
 
 
 
 
 
 
 
 
 
 
8361167
c2ebcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89cac9
c2ebcbc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
base_model:
- meta-llama/Llama-3.2-1B-Instruct
language:
- en
- vi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- Ollama
- Tool-Calling
datasets:
- hiyouga/glaive-function-calling-v2-sharegpt
---
# Function Calling Llama Model Version 1

## Overview
A specialized fine-tuned version of the **`meta-llama/Llama-3.2-1B-Instruct`** model enhanced with function/tool calling capabilities. The model leverages the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset for training.

## Model Specifications

* **Base Architecture**: meta-llama/Llama-3.2-1B-Instruct
* **Primary Language**: English (Function/Tool Calling), Vietnamese
* **Licensing**: Apache 2.0
* **Primary Developer**: nguyenthanhthuan_banhmi
* **Key Capabilities**: text-generation-inference, transformers, unsloth, llama, trl, Ollama, Tool-Calling

## Getting Started

### Prerequisites
Method 1:
1. Install [Ollama](https://ollama.com/)
2. Install required Python packages:
   ```bash
   pip install langchain pydantic torch langchain-ollama
   ```
Method 1:
1. Click use this model
2. Click Ollama

### Installation Steps

1. Clone the repository
2. Navigate to the project directory
3. Create the model in Ollama:
   ```bash
   ollama create <model_name> -f <path_to_modelfile>
   ```

## Implementation Guide

### Model Initialization

```python
from langchain_ollama import ChatOllama 

# Initialize model instance
llm = ChatOllama(model="<model_name>")
```

### Basic Usage Example

```python
# Arithmetic computation example
query = "What is 3 * 12? Also, what is 11 + 49?"
response = llm.invoke(query)

print(response.content)
# Output:
# 1. 3 times 12 is 36.
# 2. 11 plus 49 is 60.
```

### Advanced Function Calling (English Recommended)

#### Basic Arithmetic Tools
```python
from pydantic import BaseModel, Field

class add(BaseModel):
    """Addition operation for two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

class multiply(BaseModel):
    """Multiplication operation for two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

# Tool registration
tools = [add, multiply]
llm_tools = llm.bind_tools(tools)

# Execute query
response = llm_tools.invoke(query)
print(response.content)
# Output:
# {"type":"function","function":{"name":"multiply","arguments":[{"a":3,"b":12}]}}
# {"type":"function","function":{"name":"add","arguments":[{"a":11,"b":49}}]}}
```

#### Complex Tool Integration

```python
from pydantic import BaseModel, Field
from typing import List, Optional

class SendEmail(BaseModel):
    """Send an email to specified recipients."""

    to: List[str] = Field(..., description="List of email recipients")
    subject: str = Field(..., description="Email subject")
    body: str = Field(..., description="Email content/body")
    cc: Optional[List[str]] = Field(None, description="CC recipients")
    attachments: Optional[List[str]] = Field(None, description="List of attachment file paths")

class WeatherInfo(BaseModel):
    """Get weather information for a specific location."""

    city: str = Field(..., description="City name")
    country: Optional[str] = Field(None, description="Country name")
    units: str = Field("celsius", description="Temperature units (celsius/fahrenheit)")

class SearchWeb(BaseModel):
    """Search the web for given query."""

    query: str = Field(..., description="Search query")
    num_results: int = Field(5, description="Number of results to return")
    language: str = Field("en", description="Search language")

class CreateCalendarEvent(BaseModel):
    """Create a calendar event."""

    title: str = Field(..., description="Event title")
    start_time: str = Field(..., description="Event start time (ISO format)")
    end_time: str = Field(..., description="Event end time (ISO format)")
    description: Optional[str] = Field(None, description="Event description")
    attendees: Optional[List[str]] = Field(None, description="List of attendee emails")

class TranslateText(BaseModel):
    """Translate text between languages."""

    text: str = Field(..., description="Text to translate")
    source_lang: str = Field(..., description="Source language code (e.g., 'en', 'es')")
    target_lang: str = Field(..., description="Target language code (e.g., 'fr', 'de')")

class SetReminder(BaseModel):
    """Set a reminder for a specific time."""

    message: str = Field(..., description="Reminder message")
    time: str = Field(..., description="Reminder time (ISO format)")
    priority: str = Field("normal", description="Priority level (low/normal/high)")

# Combine all tools
tools = [
    SendEmail,
    WeatherInfo,
    SearchWeb,
    CreateCalendarEvent,
    TranslateText,
    SetReminder
]
llm_tools = llm.bind_tools(tools)

# Example usage
query = "Set a reminder to call John at 3 PM tomorrow. Also, translate 'Hello, how are you?' to Spanish."
print(llm_tools.invoke(query).content)
# Output:
# {"type":"function","function":{"name":"SetReminder","arguments":{"message":"Call John at 3 PM tomorrow"},"arguments":{"time":"","priority":"normal"}}}
# {"type":"function","function":{"name":"TranslateText","arguments":{"text":"Hello, how are you?", "source_lang":"en", "target_lang":"es"}}
```

## Core Features

* Arithmetic computation support
* Advanced function/tool calling capabilities
* Seamless Langchain integration
* Full Ollama platform compatibility

## Technical Details

### Dataset Information
Training utilized the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset, featuring comprehensive function calling interaction examples.

### Known Limitations

* Basic function/tool calling
* English language support exclusively
* Ollama installation dependency

## Important Notes & Considerations

### Potential Limitations and Edge Cases

* **Function Parameter Sensitivity**: The model may occasionally misinterpret complex parameter combinations, especially when multiple optional parameters are involved. Double-check parameter values in critical applications.

* **Response Format Variations**:
  - In some cases, the function calling format might deviate from the expected JSON structure
  - The model may generate additional explanatory text alongside the function call
  - Multiple function calls in a single query might not always be processed in the expected order

* **Error Handling Considerations**:
  - Empty or null values might not be handled consistently across different function types
  - Complex nested objects may sometimes be flattened unexpectedly
  - Array inputs might occasionally be processed as single values

### Best Practices for Reliability

1. **Input Validation**:
   - Always validate input parameters before processing
   - Implement proper error handling for malformed function calls
   - Consider adding default values for optional parameters

2. **Testing Recommendations**:
   - Test with various input combinations and edge cases
   - Implement retry logic for inconsistent responses
   - Log and monitor function call patterns for debugging

3. **Performance Optimization**:
   - Keep function descriptions concise and clear
   - Limit the number of simultaneous function calls
   - Cache frequently used function results when possible

### Known Issues

* Model may struggle with:
  - Very long function descriptions
  - Highly complex nested parameter structures
  - Ambiguous or overlapping function purposes
  - Non-English parameter values or descriptions

## Development

### Contributing Guidelines
We welcome contributions through issues and pull requests for improvements and bug fixes.

### License Information
Released under Apache 2.0 license. See LICENSE file for complete terms.

## Academic Citation

```bibtex
@misc{function-calling-llama,
    author = {nguyenthanhthuan_banhmi},
    title = {Function Calling Llama Model Vesion 1},
    year = {2024},
    publisher = {GitHub},
    journal = {GitHub repository}
}
```