File size: 8,058 Bytes
33da415 c2ebcbc 33da415 c303265 33da415 c2ebcbc 33da415 c2ebcbc 33da415 c89cac9 33da415 c2ebcbc 8361167 33da415 c2ebcbc 33da415 c2ebcbc 33da415 c2ebcbc c3b632e c2ebcbc c3b632e c2ebcbc 77300dd c2ebcbc 77300dd c2ebcbc 77300dd c2ebcbc 77300dd c2ebcbc 77300dd c2ebcbc 15e88dd c2ebcbc 15e88dd c2ebcbc 8361167 c2ebcbc c89cac9 c2ebcbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
base_model:
- meta-llama/Llama-3.2-1B-Instruct
language:
- en
- vi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- Ollama
- Tool-Calling
datasets:
- hiyouga/glaive-function-calling-v2-sharegpt
---
# Function Calling Llama Model Version 1
## Overview
A specialized fine-tuned version of the **`meta-llama/Llama-3.2-1B-Instruct`** model enhanced with function/tool calling capabilities. The model leverages the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset for training.
## Model Specifications
* **Base Architecture**: meta-llama/Llama-3.2-1B-Instruct
* **Primary Language**: English (Function/Tool Calling), Vietnamese
* **Licensing**: Apache 2.0
* **Primary Developer**: nguyenthanhthuan_banhmi
* **Key Capabilities**: text-generation-inference, transformers, unsloth, llama, trl, Ollama, Tool-Calling
## Getting Started
### Prerequisites
Method 1:
1. Install [Ollama](https://ollama.com/)
2. Install required Python packages:
```bash
pip install langchain pydantic torch langchain-ollama
```
Method 1:
1. Click use this model
2. Click Ollama
### Installation Steps
1. Clone the repository
2. Navigate to the project directory
3. Create the model in Ollama:
```bash
ollama create <model_name> -f <path_to_modelfile>
```
## Implementation Guide
### Model Initialization
```python
from langchain_ollama import ChatOllama
# Initialize model instance
llm = ChatOllama(model="<model_name>")
```
### Basic Usage Example
```python
# Arithmetic computation example
query = "What is 3 * 12? Also, what is 11 + 49?"
response = llm.invoke(query)
print(response.content)
# Output:
# 1. 3 times 12 is 36.
# 2. 11 plus 49 is 60.
```
### Advanced Function Calling (English Recommended)
#### Basic Arithmetic Tools
```python
from pydantic import BaseModel, Field
class add(BaseModel):
"""Addition operation for two integers."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
class multiply(BaseModel):
"""Multiplication operation for two integers."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
# Tool registration
tools = [add, multiply]
llm_tools = llm.bind_tools(tools)
# Execute query
response = llm_tools.invoke(query)
print(response.content)
# Output:
# {"type":"function","function":{"name":"multiply","arguments":[{"a":3,"b":12}]}}
# {"type":"function","function":{"name":"add","arguments":[{"a":11,"b":49}}]}}
```
#### Complex Tool Integration
```python
from pydantic import BaseModel, Field
from typing import List, Optional
class SendEmail(BaseModel):
"""Send an email to specified recipients."""
to: List[str] = Field(..., description="List of email recipients")
subject: str = Field(..., description="Email subject")
body: str = Field(..., description="Email content/body")
cc: Optional[List[str]] = Field(None, description="CC recipients")
attachments: Optional[List[str]] = Field(None, description="List of attachment file paths")
class WeatherInfo(BaseModel):
"""Get weather information for a specific location."""
city: str = Field(..., description="City name")
country: Optional[str] = Field(None, description="Country name")
units: str = Field("celsius", description="Temperature units (celsius/fahrenheit)")
class SearchWeb(BaseModel):
"""Search the web for given query."""
query: str = Field(..., description="Search query")
num_results: int = Field(5, description="Number of results to return")
language: str = Field("en", description="Search language")
class CreateCalendarEvent(BaseModel):
"""Create a calendar event."""
title: str = Field(..., description="Event title")
start_time: str = Field(..., description="Event start time (ISO format)")
end_time: str = Field(..., description="Event end time (ISO format)")
description: Optional[str] = Field(None, description="Event description")
attendees: Optional[List[str]] = Field(None, description="List of attendee emails")
class TranslateText(BaseModel):
"""Translate text between languages."""
text: str = Field(..., description="Text to translate")
source_lang: str = Field(..., description="Source language code (e.g., 'en', 'es')")
target_lang: str = Field(..., description="Target language code (e.g., 'fr', 'de')")
class SetReminder(BaseModel):
"""Set a reminder for a specific time."""
message: str = Field(..., description="Reminder message")
time: str = Field(..., description="Reminder time (ISO format)")
priority: str = Field("normal", description="Priority level (low/normal/high)")
# Combine all tools
tools = [
SendEmail,
WeatherInfo,
SearchWeb,
CreateCalendarEvent,
TranslateText,
SetReminder
]
llm_tools = llm.bind_tools(tools)
# Example usage
query = "Set a reminder to call John at 3 PM tomorrow. Also, translate 'Hello, how are you?' to Spanish."
print(llm_tools.invoke(query).content)
# Output:
# {"type":"function","function":{"name":"SetReminder","arguments":{"message":"Call John at 3 PM tomorrow"},"arguments":{"time":"","priority":"normal"}}}
# {"type":"function","function":{"name":"TranslateText","arguments":{"text":"Hello, how are you?", "source_lang":"en", "target_lang":"es"}}
```
## Core Features
* Arithmetic computation support
* Advanced function/tool calling capabilities
* Seamless Langchain integration
* Full Ollama platform compatibility
## Technical Details
### Dataset Information
Training utilized the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset, featuring comprehensive function calling interaction examples.
### Known Limitations
* Basic function/tool calling
* English language support exclusively
* Ollama installation dependency
## Important Notes & Considerations
### Potential Limitations and Edge Cases
* **Function Parameter Sensitivity**: The model may occasionally misinterpret complex parameter combinations, especially when multiple optional parameters are involved. Double-check parameter values in critical applications.
* **Response Format Variations**:
- In some cases, the function calling format might deviate from the expected JSON structure
- The model may generate additional explanatory text alongside the function call
- Multiple function calls in a single query might not always be processed in the expected order
* **Error Handling Considerations**:
- Empty or null values might not be handled consistently across different function types
- Complex nested objects may sometimes be flattened unexpectedly
- Array inputs might occasionally be processed as single values
### Best Practices for Reliability
1. **Input Validation**:
- Always validate input parameters before processing
- Implement proper error handling for malformed function calls
- Consider adding default values for optional parameters
2. **Testing Recommendations**:
- Test with various input combinations and edge cases
- Implement retry logic for inconsistent responses
- Log and monitor function call patterns for debugging
3. **Performance Optimization**:
- Keep function descriptions concise and clear
- Limit the number of simultaneous function calls
- Cache frequently used function results when possible
### Known Issues
* Model may struggle with:
- Very long function descriptions
- Highly complex nested parameter structures
- Ambiguous or overlapping function purposes
- Non-English parameter values or descriptions
## Development
### Contributing Guidelines
We welcome contributions through issues and pull requests for improvements and bug fixes.
### License Information
Released under Apache 2.0 license. See LICENSE file for complete terms.
## Academic Citation
```bibtex
@misc{function-calling-llama,
author = {nguyenthanhthuan_banhmi},
title = {Function Calling Llama Model Vesion 1},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository}
}
``` |