--- base_model: - meta-llama/Llama-3.2-1B-Instruct language: - en - vi license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - Ollama - Tool-Calling datasets: - hiyouga/glaive-function-calling-v2-sharegpt --- # Function Calling Llama Model ## Overview A specialized fine-tuned version of the **`meta-llama/Llama-3.2-1B-Instruct`** model enhanced with function/tool calling capabilities. The model leverages the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset for training. ## Model Specifications * **Base Architecture**: meta-llama/Llama-3.2-1B-Instruct * **Primary Language**: English (Function/Tool Calling), Vietnamese * **Licensing**: Apache 2.0 * **Primary Developer**: nguyenthanhthuan_banhmi * **Key Capabilities**: text-generation-inference, transformers, unsloth, llama, trl, Ollama, Tool-Calling ## Getting Started ### Prerequisites Method 1: 1. Install [Ollama](https://ollama.com/) 2. Install required Python packages: ```bash pip install langchain pydantic torch langchain-ollama ``` Method 1: 1. Click use this model 2. Click Ollama ### Installation Steps 1. Clone the repository 2. Navigate to the project directory 3. Create the model in Ollama: ```bash ollama create -f ``` ## Implementation Guide ### Model Initialization ```python from langchain_ollama import ChatOllama # Initialize model instance llm = ChatOllama(model="") ``` ### Basic Usage Example ```python # Arithmetic computation example query = "What is 3 * 12? Also, what is 11 + 49?" response = llm.invoke(query) print(response.content) # Output: # 1. 3 times 12 is 36. # 2. 11 plus 49 is 60. ``` ### Advanced Function Calling (English Recommended) #### Basic Arithmetic Tools ```python from pydantic import BaseModel, Field class add(BaseModel): """Addition operation for two integers.""" a: int = Field(..., description="First integer") b: int = Field(..., description="Second integer") class multiply(BaseModel): """Multiplication operation for two integers.""" a: int = Field(..., description="First integer") b: int = Field(..., description="Second integer") # Tool registration tools = [add, multiply] llm_tools = llm.bind_tools(tools) # Execute query response = llm_tools.invoke(query) print(response.content) # Output: # {"type":"function","function":{"name":"multiply","arguments":[{"a":3,"b":12}]}} # {"type":"function","function":{"name":"add","arguments":[{"a":11,"b":49}}]}} ``` #### Complex Tool Integration ```python from pydantic import BaseModel, Field from typing import List, Optional class SendEmail(BaseModel): """Email dispatch functionality.""" to: List[str] = Field(..., description="List of email recipients") subject: str = Field(..., description="Email subject") body: str = Field(..., description="Email content/body") cc: Optional[List[str]] = Field(None, description="CC recipients") attachments: Optional[List[str]] = Field(None, description="List of attachment file paths") class WeatherInfo(BaseModel): """Weather information retrieval.""" city: str = Field(..., description="City name") country: Optional[str] = Field(None, description="Country name") units: str = Field("celsius", description="Temperature units (celsius/fahrenheit)") class SearchWeb(BaseModel): """Web search functionality.""" query: str = Field(..., description="Search query") num_results: int = Field(5, description="Number of results to return") language: str = Field("en", description="Search language") class CreateCalendarEvent(BaseModel): """Calendar event creation.""" title: str = Field(..., description="Event title") start_time: str = Field(..., description="Event start time (ISO format)") end_time: str = Field(..., description="Event end time (ISO format)") description: Optional[str] = Field(None, description="Event description") attendees: Optional[List[str]] = Field(None, description="List of attendee emails") # Tool integration tools = [SendEmail, WeatherInfo, SearchWeb, CreateCalendarEvent] llm_tools = llm.bind_tools(tools) # Example usage query = "Set a reminder to call John at 3 PM tomorrow. Also, translate 'Hello, how are you?' to Spanish." print(llm_tools.invoke(query).content) # Output: # {"type":"function","function":{"name":"SetReminder","arguments":{"message":"Call John at 3 PM tomorrow"},"arguments":{"time":"","priority":"normal"}}} # {"type":"function","function":{"name":"TranslateText","arguments":{"text":"Hello, how are you?", "source_lang":"en", "target_lang":"es"}} ``` ## Core Features * Arithmetic computation support * Advanced function/tool calling capabilities * Seamless Langchain integration * Full Ollama platform compatibility ## Technical Details ### Dataset Information Training utilized the **`hiyouga/glaive-function-calling-v2-sharegpt`** dataset, featuring comprehensive function calling interaction examples. ### Known Limitations * Basic function/tool calling * English language support exclusively * Ollama installation dependency ## Important Notes & Considerations ### Potential Limitations and Edge Cases * **Function Parameter Sensitivity**: The model may occasionally misinterpret complex parameter combinations, especially when multiple optional parameters are involved. Double-check parameter values in critical applications. * **Response Format Variations**: - In some cases, the function calling format might deviate from the expected JSON structure - The model may generate additional explanatory text alongside the function call - Multiple function calls in a single query might not always be processed in the expected order * **Error Handling Considerations**: - Empty or null values might not be handled consistently across different function types - Complex nested objects may sometimes be flattened unexpectedly - Array inputs might occasionally be processed as single values ### Best Practices for Reliability 1. **Input Validation**: - Always validate input parameters before processing - Implement proper error handling for malformed function calls - Consider adding default values for optional parameters 2. **Testing Recommendations**: - Test with various input combinations and edge cases - Implement retry logic for inconsistent responses - Log and monitor function call patterns for debugging 3. **Performance Optimization**: - Keep function descriptions concise and clear - Limit the number of simultaneous function calls - Cache frequently used function results when possible ### Known Issues * Model may struggle with: - Very long function descriptions - Highly complex nested parameter structures - Ambiguous or overlapping function purposes - Non-English parameter values or descriptions ## Development ### Contributing Guidelines We welcome contributions through issues and pull requests for improvements and bug fixes. ### License Information Released under Apache 2.0 license. See LICENSE file for complete terms. ## Academic Citation ```bibtex @misc{function-calling-llama, author = {nguyenthanhthuan_banhmi}, title = {Function Calling Llama Model}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository} } ```