nguyenvulebinh commited on
Commit
a1ec488
·
verified ·
1 Parent(s): 1484d31

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +203 -194
README.md CHANGED
@@ -3,197 +3,206 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ # Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
7
+
8
+ This repository contains a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model, specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self-supervised model designed for audio-visual speech recognition, leveraging both audio and visual modalities to achieve robust performance, especially in noisy environments.
9
+
10
+
11
+ Key features of this repository include:
12
+
13
+ - Pre-trained Models: Access pre-trained AV-HuBERT models fine-tuned on the MuAViC dataset. The pre-trained model been exported from [MuAViC](https://github.com/facebookresearch/muavic) repository.
14
+
15
+ - Inference scripts: Easily pipelines using Huggingface’s interface.
16
+
17
+ - Data preprocessing scripts: Including normalize frame rate, extract lips and audio.
18
+
19
+ ### Inference code
20
+
21
+ ```sh
22
+ git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
23
+ cd AV-HuBERT-S2S
24
+ conda create -n avhuberts2s python=3.9
25
+ conda activate avhuberts2s
26
+ pip install -r requirements.txt
27
+ python run_example.py
28
+ ```
29
+
30
+ ```python
31
+ from src.model.avhubert2text import AV2TextForConditionalGeneration
32
+ from src.dataset.load_data import load_feature
33
+ from transformers import Speech2TextTokenizer
34
+ import torch
35
+
36
+ if __name__ == "__main__":
37
+ # Load pretrained english model
38
+ model = AV2TextForConditionalGeneration.from_pretrained('nguyenvulebinh/AV-HuBERT')
39
+ tokenizer = Speech2TextTokenizer.from_pretrained('nguyenvulebinh/AV-HuBERT')
40
+
41
+ # cuda
42
+ model = model.cuda().eval()
43
+
44
+ # Load normalized input data
45
+ sample = load_feature(
46
+ './example/lip_movement.mp4',
47
+ "./example/noisy_audio.wav"
48
+ )
49
+
50
+ # cuda
51
+ audio_feats = sample['audio_source'].cuda()
52
+ video_feats = sample['video_source'].cuda()
53
+ attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
54
+
55
+ # Generate output sequence using HF interface
56
+ output = model.generate(
57
+ audio_feats,
58
+ attention_mask=attention_mask,
59
+ video=video_feats,
60
+ )
61
+
62
+ # decode output sequence
63
+ print(tokenizer.batch_decode(output, skip_special_tokens=True))
64
+
65
+ # check output
66
+ assert output.detach().cpu().numpy().tolist() == [[ 2, 16, 130, 516, 8, 339, 541, 808, 210, 195, 541, 79, 130, 317, 269, 4, 2]]
67
+ print("Example run successfully")
68
+ ```
69
+
70
+ ### Data preprocessing scripts
71
+
72
+ ```sh
73
+ mkdir model-bin
74
+ cd model-bin
75
+ wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
76
+ wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
77
+
78
+ # raw video only support 4:3 ratio now
79
+ cp raw_video.mp4 ./example/
80
+
81
+ python src/dataset/video_to_audio_lips.py
82
+ ```
83
+
84
+ ### Pretrained model
85
+
86
+ <table align="center">
87
+ <tr>
88
+ <th>Task</th>
89
+ <th>Languages</th>
90
+ <th>Huggingface</th>
91
+ </tr>
92
+ <tr>
93
+ <td rowspan="10">AVSR</td>
94
+ <th>ar</th>
95
+ <th><a href="todo">TODO</a></th>
96
+ </tr>
97
+ <tr>
98
+ <th>de</th>
99
+ <th><a href="todo">TODO</a></th>
100
+ </tr>
101
+ <tr>
102
+ <th>el</th>
103
+ <th><a href="todo">TODO</a></th>
104
+ </tr>
105
+ <tr>
106
+ <th>en</th>
107
+ <th><a href="nguyenvulebinh/AV-HuBERT">English Chekpoint</a></th>
108
+ </tr>
109
+ <tr>
110
+ <th>es</th>
111
+ <th><a href="todo">TODO</a></th>
112
+ </tr>
113
+ <tr>
114
+ <th>fr</th>
115
+ <th><a href="todo">TODO</a></th>
116
+ </tr>
117
+ <tr>
118
+ <th>it</th>
119
+ <th><a href="todo">TODO</a></th>
120
+ </tr>
121
+ <tr>
122
+ <th>pt</th>
123
+ <th><a href="todo">TODO</a></th>
124
+ </tr>
125
+ <tr>
126
+ <th>ru</th>
127
+ <th><a href="todo">TODO</a></th>
128
+ </tr>
129
+ <tr>
130
+ <th>ar,de,el,es,fr,it,pt,ru</th>
131
+ <th><a href="todo">TODO</a></th>
132
+ </tr>
133
+ <tr>
134
+ <td rowspan="13">AVST</td>
135
+ <th>en-el</th>
136
+ <th><a href="todo">TODO</a></th>
137
+ </tr>
138
+ <tr>
139
+ <th>en-es</th>
140
+ <th><a href="todo">TODO</a></th>
141
+ </tr>
142
+ <tr>
143
+ <th>en-fr</th>
144
+ <th><a href="todo">TODO</a></th>
145
+ </tr>
146
+ <tr>
147
+ <th>en-it</th>
148
+ <th><a href="todo">TODO</a></th>
149
+ </tr>
150
+ <tr>
151
+ <th>en-pt</th>
152
+ <th><a href="todo">TODO</a></th>
153
+ </tr>
154
+ <tr>
155
+ <th>en-ru</th>
156
+ <th><a href="todo">TODO</a></th>
157
+ </tr>
158
+ <tr>
159
+ <th>el-en</th>
160
+ <th><a href="todo">TODO</a></th>
161
+ </tr>
162
+ <tr>
163
+ <th>es-en</th>
164
+ <th><a href="todo">TODO</a></th>
165
+ </tr>
166
+ <tr>
167
+ <th>fr-en</th>
168
+ <th><a href="todo">TODO</a></th>
169
+ </tr>
170
+ <tr>
171
+ <th>it-en</th>
172
+ <th><a href="todo">TODO</a></th>
173
+ </tr>
174
+ <tr>
175
+ <th>pt-en</th>
176
+ <th><a href="todo">TODO</a></th>
177
+ </tr>
178
+ <tr>
179
+ <th>ru-en</th>
180
+ <th><a href="todo">TODO</a></th>
181
+ </tr>
182
+ <tr>
183
+ <th>{el,es,fr,it,pt,ru}-en</th>
184
+ <th><a href="todo">TODO</a></th>
185
+ </tr>
186
+ </table>
187
+
188
+
189
+ ## Acknowledgments
190
+
191
+ **AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
192
+
193
+ **MuAViC Repository**: We also gratefully acknowledge the creators of the MuAViC dataset and repository for providing the pre-trained models used in this project
194
+
195
+ ## License
196
+
197
+ CC-BY-NC 4.0
198
+
199
+ ## Citation
200
+
201
+ ```bibtex
202
+ @article{anwar2023muavic,
203
+ title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
204
+ author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
205
+ journal={arXiv preprint arXiv:2303.00628},
206
+ year={2023}
207
+ }
208
+ ```