--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall model-index: - name: distilbert-base-multilingual-cased-lora-text-classification results: [] --- # distilbert-base-multilingual-cased-lora-text-classification This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5321 - Precision: 0.7883 - Recall: 0.8589 - F1 and accuracy: {'accuracy': 0.7487113402061856, 'f1': 0.8220802919708029} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 and accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:----------------------------------------------------------:| | 0.6034 | 1.0 | 1552 | 0.5999 | 0.6781 | 0.9981 | {'accuracy': 0.678479381443299, 'f1': 0.8075588121866564} | | 0.5756 | 2.0 | 3104 | 0.5892 | 0.7067 | 0.9418 | {'accuracy': 0.696520618556701, 'f1': 0.8075194115243155} | | 0.5607 | 3.0 | 4656 | 0.5630 | 0.7449 | 0.8770 | {'accuracy': 0.7139175257731959, 'f1': 0.8056042031523644} | | 0.5458 | 4.0 | 6208 | 0.5549 | 0.7544 | 0.8990 | {'accuracy': 0.7338917525773195, 'f1': 0.8203566768160069} | | 0.5342 | 5.0 | 7760 | 0.5816 | 0.7381 | 0.9457 | {'accuracy': 0.7364690721649485, 'f1': 0.8290848307563727} | | 0.5266 | 6.0 | 9312 | 0.5399 | 0.7705 | 0.8799 | {'accuracy': 0.7416237113402062, 'f1': 0.8215398308856252} | | 0.519 | 7.0 | 10864 | 0.5315 | 0.7932 | 0.8408 | {'accuracy': 0.7442010309278351, 'f1': 0.8162887552059231} | | 0.4878 | 8.0 | 12416 | 0.5318 | 0.7880 | 0.8541 | {'accuracy': 0.7461340206185567, 'f1': 0.8197621225983532} | | 0.485 | 9.0 | 13968 | 0.5332 | 0.7851 | 0.8637 | {'accuracy': 0.7480670103092784, 'f1': 0.8225147526100772} | | 0.5044 | 10.0 | 15520 | 0.5321 | 0.7883 | 0.8589 | {'accuracy': 0.7487113402061856, 'f1': 0.8220802919708029} | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2