File size: 3,130 Bytes
e812af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5155
- Wer: 0.3388

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.5822        | 1.0   | 500   | 2.4127          | 1.0    |
| 0.9838        | 2.01  | 1000  | 0.5401          | 0.5363 |
| 0.4308        | 3.01  | 1500  | 0.4380          | 0.4592 |
| 0.3086        | 4.02  | 2000  | 0.4409          | 0.4503 |
| 0.2324        | 5.02  | 2500  | 0.4148          | 0.4041 |
| 0.202         | 6.02  | 3000  | 0.4214          | 0.3882 |
| 0.1595        | 7.03  | 3500  | 0.4489          | 0.3875 |
| 0.1383        | 8.03  | 4000  | 0.4225          | 0.3858 |
| 0.1246        | 9.04  | 4500  | 0.4512          | 0.3846 |
| 0.104         | 10.04 | 5000  | 0.4676          | 0.3875 |
| 0.0949        | 11.04 | 5500  | 0.4389          | 0.3683 |
| 0.0899        | 12.05 | 6000  | 0.4964          | 0.3803 |
| 0.0854        | 13.05 | 6500  | 0.5397          | 0.3798 |
| 0.0728        | 14.06 | 7000  | 0.4823          | 0.3666 |
| 0.065         | 15.06 | 7500  | 0.5187          | 0.3648 |
| 0.0573        | 16.06 | 8000  | 0.5378          | 0.3715 |
| 0.0546        | 17.07 | 8500  | 0.5239          | 0.3705 |
| 0.0573        | 18.07 | 9000  | 0.5094          | 0.3554 |
| 0.0478        | 19.08 | 9500  | 0.5334          | 0.3657 |
| 0.0673        | 20.08 | 10000 | 0.5300          | 0.3528 |
| 0.0434        | 21.08 | 10500 | 0.5314          | 0.3528 |
| 0.0363        | 22.09 | 11000 | 0.5540          | 0.3512 |
| 0.0326        | 23.09 | 11500 | 0.5514          | 0.3510 |
| 0.0332        | 24.1  | 12000 | 0.5439          | 0.3492 |
| 0.0275        | 25.1  | 12500 | 0.5273          | 0.3432 |
| 0.0267        | 26.1  | 13000 | 0.5068          | 0.3430 |
| 0.0243        | 27.11 | 13500 | 0.5131          | 0.3388 |
| 0.0228        | 28.11 | 14000 | 0.5247          | 0.3406 |
| 0.0227        | 29.12 | 14500 | 0.5155          | 0.3388 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1