--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5822 | 1.0 | 500 | 2.4127 | 1.0 | | 0.9838 | 2.01 | 1000 | 0.5401 | 0.5363 | | 0.4308 | 3.01 | 1500 | 0.4380 | 0.4592 | | 0.3086 | 4.02 | 2000 | 0.4409 | 0.4503 | | 0.2324 | 5.02 | 2500 | 0.4148 | 0.4041 | | 0.202 | 6.02 | 3000 | 0.4214 | 0.3882 | | 0.1595 | 7.03 | 3500 | 0.4489 | 0.3875 | | 0.1383 | 8.03 | 4000 | 0.4225 | 0.3858 | | 0.1246 | 9.04 | 4500 | 0.4512 | 0.3846 | | 0.104 | 10.04 | 5000 | 0.4676 | 0.3875 | | 0.0949 | 11.04 | 5500 | 0.4389 | 0.3683 | | 0.0899 | 12.05 | 6000 | 0.4964 | 0.3803 | | 0.0854 | 13.05 | 6500 | 0.5397 | 0.3798 | | 0.0728 | 14.06 | 7000 | 0.4823 | 0.3666 | | 0.065 | 15.06 | 7500 | 0.5187 | 0.3648 | | 0.0573 | 16.06 | 8000 | 0.5378 | 0.3715 | | 0.0546 | 17.07 | 8500 | 0.5239 | 0.3705 | | 0.0573 | 18.07 | 9000 | 0.5094 | 0.3554 | | 0.0478 | 19.08 | 9500 | 0.5334 | 0.3657 | | 0.0673 | 20.08 | 10000 | 0.5300 | 0.3528 | | 0.0434 | 21.08 | 10500 | 0.5314 | 0.3528 | | 0.0363 | 22.09 | 11000 | 0.5540 | 0.3512 | | 0.0326 | 23.09 | 11500 | 0.5514 | 0.3510 | | 0.0332 | 24.1 | 12000 | 0.5439 | 0.3492 | | 0.0275 | 25.1 | 12500 | 0.5273 | 0.3432 | | 0.0267 | 26.1 | 13000 | 0.5068 | 0.3430 | | 0.0243 | 27.11 | 13500 | 0.5131 | 0.3388 | | 0.0228 | 28.11 | 14000 | 0.5247 | 0.3406 | | 0.0227 | 29.12 | 14500 | 0.5155 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1