{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "Q-bj6K7Qv4ft" }, "source": [ "# Instruction-Tuning a Generative Pretrained Transformer\n", "\n", "1. First, intall `transformers` library." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install transformers" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "- Load the dataset.\n", "- Load GPT-2 Tokenizer and add the choosen special tokens (`'<|startoftext|>', '<|endoftext|>','<|pad|>'`)\n", "- Create demonstrations by prepending the special tokens.\n", "- Calculate the maximum lenght (in tokens) that the demonstrations have." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 423 }, "id": "7MbpXGu-v4f1", "outputId": "2f764046-c977-4187-c9fc-5a37eb6ff28b" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset parquet (C:/Users/CWLINK/.cache/huggingface/datasets/nicholasKluge___parquet/nicholasKluge--fine-tuning-instruct-aira-c7a6e731d782bc09/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "75b57109c2544501a6f6eac494b6ba0b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/4 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
promptcompletion
0I was wondering if you could walk me through t...Sure! The process for setting up a hydroponic ...
1What type of wine goes best with steak.The best type of wine to pair with steak depen...
2How do I know if this is a good investment.Answer: To determine if an investment is a goo...
3Please provide me with some financial advice.Some financial advice is to always pay yoursel...
4What kind of safety devices do I need to insta...The type of safety devices you should install ...
.........
42869How do computers communicate and network with ...Computers communicate and network with each ot...
42870How are websites different from web applications?Websites and web applications are similar in t...
42871What is open-source software and its benefits?Open-source software is software that is made ...
42872What is a cookie and how is it used in web bro...A cookie is a small piece of data that a websi...
42873What is cloud storage and its advantages for d...Cloud storage is a service that allows you to ...
\n", "

42874 rows × 2 columns

\n", "" ], "text/plain": [ " prompt \\\n", "0 I was wondering if you could walk me through t... \n", "1 What type of wine goes best with steak. \n", "2 How do I know if this is a good investment. \n", "3 Please provide me with some financial advice. \n", "4 What kind of safety devices do I need to insta... \n", "... ... \n", "42869 How do computers communicate and network with ... \n", "42870 How are websites different from web applications? \n", "42871 What is open-source software and its benefits? \n", "42872 What is a cookie and how is it used in web bro... \n", "42873 What is cloud storage and its advantages for d... \n", "\n", " completion \n", "0 Sure! The process for setting up a hydroponic ... \n", "1 The best type of wine to pair with steak depen... \n", "2 Answer: To determine if an investment is a goo... \n", "3 Some financial advice is to always pay yoursel... \n", "4 The type of safety devices you should install ... \n", "... ... \n", "42869 Computers communicate and network with each ot... \n", "42870 Websites and web applications are similar in t... \n", "42871 Open-source software is software that is made ... \n", "42872 A cookie is a small piece of data that a websi... \n", "42873 Cloud storage is a service that allows you to ... \n", "\n", "[42874 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "21930e5b069c42eba7b67aa9323901c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading: 0%| | 0.00/1.04M [00:00', \n", " eos_token='<|endoftext|>', \n", " pad_token='<|pad|>')\n", "\n", "# create column that concatenates the two sentences\n", "df['demonstrations'] = tokenizer.bos_token + df['prompt'] + tokenizer.eos_token + df['completion'] + tokenizer.eos_token\n", "\n", "# calculate the length of the text\n", "df['length'] = df['demonstrations'].apply(lambda x: len(tokenizer.encode(x)))\n", "\n", "print(\"Total number of demonstrations: \", len(df))\n", "print(f\"The longest demonstration is {df['length'].max()} tokens long.\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "2. Create the Dataset class." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "WlbAfMQ4v4gA" }, "outputs": [], "source": [ "import torch\n", "from torch.utils.data import Dataset\n", "\n", "max_length = 300\n", "\n", "class DemoDataset(Dataset):\n", "\n", " def __init__(self, demonstrations, tokenizer, max_length=max_length):\n", "\n", " self.tokenizer = tokenizer\n", " self.input_ids = []\n", " self.attn_masks = []\n", "\n", " for demo in demonstrations:\n", "\n", " encodings_dict = tokenizer(demo, \n", " truncation=True, \n", " max_length=max_length, \n", " padding=\"max_length\")\n", " \n", " self.input_ids.append(torch.tensor(encodings_dict['input_ids']))\n", " self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))\n", " \n", " def __len__(self):\n", " return len(self.input_ids)\n", "\n", " def __getitem__(self, idx):\n", " return self.input_ids[idx], self.attn_masks[idx] " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "3. Split the data into training ad validation splits." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-IOfa2PEv4gD", "outputId": "151f4cae-32f2-45d6-f205-60302dc7de5b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of training samples: 38,586\n", "Number of validation samples: 4,288\n" ] } ], "source": [ "from torch.utils.data import random_split\n", "\n", "dataset = DemoDataset(df.demonstrations.to_list(), tokenizer, max_length=max_length)\n", "\n", "train_size = int(0.9 * len(dataset))\n", "val_size = len(dataset) - train_size\n", "\n", "train_dataset, val_dataset = random_split(dataset, [train_size, val_size])\n", "\n", "print('Number of training samples: {:,}'.format(train_size))\n", "print('Number of validation samples: {:,}'.format(val_size))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "4. Create the `DataLoaders`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "cUkCNV-6v4gG" }, "outputs": [], "source": [ "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n", "\n", "train_dataloader = DataLoader(\n", " train_dataset, \n", " sampler=RandomSampler(train_dataset),\n", " batch_size=32\n", " )\n", "\n", "# validation data loader doesn't need randomization\n", "validation_dataloader=DataLoader(\n", " val_dataset, \n", " sampler=SequentialSampler(val_dataset), \n", " batch_size=32 \n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "5. load the base model." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 550, "referenced_widgets": [ "a7bb2d4cc1f74f33a62466e130d3c1a9", "9706bd5a6d164205989e96923280c522", "ef7694f2925d4422804baaede5c64c0b", "ef8d6e8fb2d54711bac0321e577ce9a5", "b629c8287f904d5c904f19d148ff663e", "7b95ba7da67a413f8e45864ca909cd6f", "681e6b5e2a484e63aabe7f9fb2767ad4", "55cecbcb63304d9f80f4931a368232e0", "5be34fa7a15a441d96b20daef61c6891", "d8c1b2a4ddc8416aa834c9379b307d4c", "e7004f2f677f4401bfbf729720ca987e", "567c00bdbe7f45cab7e48eca1a86ee62", "09570e24b3874bb99eed96409166e9e7", "f803d30823a64323886d2fd5315858ca", "db12c8a901d644c0b9aac03b7f1d37a4", "cebda9f32b0d4519b7bebfbf67ac410e", "0b8dced3f8bc4172a46c93fccca737eb", "e8b56ed15a48482096142f730bb248f3", "5d489be7701f4057874e80f081f04c1d", "7574f84c6d3c484cb1d07f417c47ba98", "4a85a12703a04dc8acb6808e520c9121", "32fdf73a7b36404fbe56e5972b868291" ] }, "id": "Rmg-5YJqv4gH", "outputId": "3e615596-cbae-41a7-b2a1-a8fd9fca9527" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a7bb2d4cc1f74f33a62466e130d3c1a9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading pytorch_model.bin: 0%| | 0.00/548M [00:00 model.config.n_layer - UNFREEZE_LAST_N:\n", " for parameter in m.parameters():\n", " parameter.requires_grad = True \n", "\n", " for parameter in model.transformer.ln_f.parameters(): \n", " parameter.requires_grad = True\n", "\n", " for parameter in model.lm_head.parameters(): \n", " parameter.requires_grad = True\n", "\n", "# Count the number of frozen and trainable layers\n", "num_frozen_layers = sum(1 for parameter in model.parameters() if not parameter.requires_grad)\n", "num_trainable_layers = sum(1 for parameter in model.parameters() if parameter.requires_grad)\n", "\n", "print(\"Number of frozen layers:\", num_frozen_layers)\n", "print(\"Number of trainable layers:\", num_trainable_layers)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "6. Setting training parameters." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "qlbLg6tqv4gI" }, "outputs": [], "source": [ "from transformers import get_linear_schedule_with_warmup\n", "\n", "epochs = 5\n", "\n", "warmup_steps = 1e2\n", "\n", "sample_every = 100 # generate a sample every 100 batches\n", "\n", "optimizer = torch.optim.AdamW(model.parameters(), lr = 5e-4, eps = 1e-8)\n", "\n", "total_steps = len(train_dataloader) * epochs\n", "\n", "scheduler = get_linear_schedule_with_warmup(optimizer, \n", " num_warmup_steps = warmup_steps, \n", " num_training_steps = total_steps)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "7. Training/Validation loop." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_X_m8XOtv4gR", "outputId": "a234e6b3-ef01-4bc9-a2ed-c82a794e022f" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning epoch 1 of 5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 35%|███▌ | 100/283 [01:00<01:43, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 100 of 283. Loss:0.92487633228302.\n", "Example output: How does deep learning impact privacy and safeguarding of data?Deep learning enables a model to perform tasks in a manner that is both deterministic and intelligent: it employs an adversarial approach in such a way that is often transparent, but is not biased in its results. It has advantages over natural language processing.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 71%|███████ | 200/283 [01:58<00:47, 1.76it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 200 of 283. Loss:0.7599731683731079.\n", "Example output: What are the main applications of machine learning?Machine learning encompasses tasks such as identifying and extracting patterns in data, analyzing data, and analyzing patterns in the data. It also includes several computational tasks such as segmentation, clustering, and machine learning algorithms that aim to gather information across several dimensions.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 283/283 [02:46<00:00, 1.70it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Average Training Loss: 1.7797733711690868.\n", "Validation loss: 0.6214480362832546.\n", "Beginning epoch 2 of 5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 35%|███▌ | 100/283 [00:56<01:43, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 100 of 283. Loss:0.6944515109062195.\n", "Example output: What are some of the major debates in the field of epistemology?Epistemology is an intriguing field of study that centers around the study of the epistemology of texts. Scholars and philosophers from various religions, from Plato to Xenophon have explored this field in tandem. There have also been several controversies surrounding the extent to which certain individuals can make substantial contributions to the study of epistemology, including those of Socrates and Marcus Aurelius. Epistemology offers a fascinating exploration of one of the primary strands of social science, namely the role of the mind in epistemology.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 71%|███████ | 200/283 [01:55<00:47, 1.76it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 200 of 283. Loss:0.6129528284072876.\n", "Example output: Can you explain the origin of Occam's razor?The ancient Greek philosopher Zeno of Citium, known as Stoics, was the first to argue for the existence of objective reality. In his treatise on the subject, he presented the threefold nature of things, namely, the objective nature, relative knowledge, and personal perception.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 283/283 [02:42<00:00, 1.74it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Average Training Loss: 0.598113334221048.\n", "Validation loss: 0.5255831023678184.\n", "Beginning epoch 3 of 5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 35%|███▌ | 100/283 [00:56<01:43, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 100 of 283. Loss:0.5187301635742188.\n", "Example output: How can we ensure that AI does not compromise the privacy of children and adolescents?AI technologies should be developed to ensure that they comply with human rights, which include Child and Adolescent Rights. The primary objective of this principle is to establish ethical standards and standards for AI development and use.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 71%|███████ | 200/283 [01:53<00:47, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 200 of 283. Loss:0.49698150157928467.\n", "Example output: How far are we from achieving general artificial intelligence?The realm of General Intelligence encompasses the capability of AGI to undertake any task that can be undertaken by any intelligent entity, including, but not limited to, Artificial General Intelligence (AGI).\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 283/283 [02:41<00:00, 1.76it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Average Training Loss: 0.5052632845332682.\n", "Validation loss: 0.48149530217051506.\n", "Beginning epoch 4 of 5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 35%|███▌ | 100/283 [00:56<01:43, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 100 of 283. Loss:0.4454309046268463.\n", "Example output: How does Goodhart's law work?In the realm of machine learning, Goodhart's Law stands as one of three noteworthy law-based optimization techniques, along with Alignment Daemons, which have been instrumental in achieving significant benefits for machine learning.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 71%|███████ | 200/283 [01:53<00:47, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 200 of 283. Loss:0.4759449064731598.\n", "Example output: In what ways does the creative process get impacted by deep learning?The realm of deep learning is dedicated to the exploration of novel means of creating engaging and immersive artworks. The ability to imbibe these outputs imbued with profound emotional and ethical significance enables individuals to imbibe these exceptional creations with greater comprehension and comprehension.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 283/283 [02:41<00:00, 1.75it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Average Training Loss: 0.45279810411770016.\n", "Validation loss: 0.46003800816833973.\n", "Beginning epoch 5 of 5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 35%|███▌ | 100/283 [00:56<01:43, 1.76it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 100 of 283. Loss:0.4711158275604248.\n", "Example output: How does a feedforward neural network work?An FNN is a type of neural network that lacks cyclic or recursive connections, unlike the recurrent neural networks of RNNs. The FNN's main purpose is to form a graph over a time sequence, then display dynamic behavior using the feedforward pass through it. This allows the network to exhibit dynamic behavior that is proportional to the number of folds in the graph. The Feedforward Neural Network (FNN) is an example of a FNN, famously known as Inner-Neural Zoo.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 71%|███████ | 200/283 [01:54<00:47, 1.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Batch 200 of 283. Loss:0.4309981167316437.\n", "Example output: How does Aumann's agreement theorem relate to Nash Equilibrium?According to Aumann's Agreement Theorem, two rational agents who share common principles are obligated to act in accordance with one another's beliefs, and this means they must inevitably come to a mutual agreement.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 283/283 [02:42<00:00, 1.75it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Average Training Loss: 0.42189987072253815.\n", "Validation loss: 0.4528817282989621.\n" ] } ], "source": [ "import tqdm\n", "\n", "training_stats = []\n", "\n", "for epoch_i in range(0, epochs):\n", "\n", " print(f'Beginning epoch {epoch_i + 1} of {epochs}')\n", "\n", " total_train_loss = 0\n", "\n", " model.train()\n", "\n", " for step, batch in enumerate(tqdm.tqdm(train_dataloader)):\n", "\n", " b_input_ids = batch[0].to(device)\n", " b_labels = batch[0].to(device)\n", " b_masks = batch[1].to(device)\n", "\n", " model.zero_grad() \n", "\n", " outputs = model(b_input_ids,\n", " labels=b_labels, \n", " attention_mask = b_masks,\n", " token_type_ids=None)\n", "\n", " loss = outputs[0] \n", "\n", " batch_loss = loss.item()\n", " total_train_loss += batch_loss\n", "\n", " # Sample every 100 batches\n", " if step % sample_every == 0 and not step == 0:\n", "\n", " print(f'Batch {step} of {len(train_dataloader)}. Loss:{batch_loss}.')\n", "\n", " model.eval()\n", "\n", " inputs = tokenizer(tokenizer.bos_token + df.prompt.sample().iloc[0] + tokenizer.eos_token, return_tensors=\"pt\").to(device)\n", "\n", " sample_outputs = model.generate(**inputs,\n", " bos_token_id=tokenizer.bos_token_id,\n", " pad_token_id=tokenizer.pad_token_id,\n", " eos_token_id=tokenizer.eos_token_id,\n", " do_sample=True, \n", " top_k=50, \n", " max_length = 200,\n", " top_p=0.95, \n", " num_return_sequences=1)\n", " \n", " for i, sample_output in enumerate(sample_outputs):\n", " print(f'Example output: {tokenizer.decode(sample_output, skip_special_tokens=True)}')\n", " \n", " model.train()\n", "\n", " loss.backward()\n", "\n", " optimizer.step()\n", "\n", " scheduler.step()\n", "\n", " avg_train_loss = total_train_loss / len(train_dataloader) \n", "\n", " print(f'Average Training Loss: {avg_train_loss}.')\n", "\n", " model.eval()\n", "\n", " total_eval_loss = 0\n", " nb_eval_steps = 0\n", "\n", " for batch in validation_dataloader:\n", " \n", " b_input_ids = batch[0].to(device)\n", " b_labels = batch[0].to(device)\n", " b_masks = batch[1].to(device)\n", " \n", " with torch.no_grad(): \n", "\n", " outputs = model(b_input_ids, \n", " attention_mask = b_masks,\n", " labels=b_labels)\n", " \n", " loss = outputs[0] \n", " \n", " batch_loss = loss.item()\n", " total_eval_loss += batch_loss \n", "\n", " avg_val_loss = total_eval_loss / len(validation_dataloader)\n", "\n", " print(f'Validation loss: {avg_val_loss}.')\n", "\n", " training_stats.append(\n", " {\n", " 'epoch': epoch_i + 1,\n", " 'Training Loss': avg_train_loss,\n", " 'Valid. Loss': avg_val_loss,\n", " }\n", " )\n", "\n", "print(\"Training complete!\")\n", "\n", "df_stats = pd.DataFrame(data=training_stats)\n", "df_stats = df_stats.set_index('epoch')\n", "df_stats.to_parquet(\"./training_stats.parquet\", compression=\"gzip\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "8. Plotting Learning Curves." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 446 }, "id": "J1-hAY9Av4gT", "outputId": "799f3284-c8e7-46f4-e7f1-55638a6d81bc" }, "outputs": [ { "data": { "text/markdown": [ "| epoch | Training Loss | Valid. Loss |\n", "|--------:|----------------:|--------------:|\n", "| 1 | 0.852566 | 0.574185 |\n", "| 2 | 0.549692 | 0.544331 |\n", "| 3 | 0.481956 | 0.53601 |" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAI6CAYAAACad2unAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4H0lEQVR4nOzdd3iUVfr/8feUFNJIAklAAqGFAIYOIh2RroKgoqIoKLjq2lddFUWEr4q7+rO7WOgKCNhoAlKCgErvBFIILUASUkmfJPP7I5tZYwKkMpPweV3XXupTzrmfZA7Lc8+5zzFYrVYrIiIiIiIiIiJlYLR3ACIiIiIiIiJScyiRICIiIiIiIiJlpkSCiIiIiIiIiJSZEgkiIiIiIiIiUmZKJIiIiIiIiIhImSmRICIiIiIiIiJlpkSCiIiIiIiIiJSZEgkiIiIiIiIiUmZKJIiIiIiIiIhImSmRICIidvP9998TEhJS7v+NGzeuWuMaN24cISEhvP/++5Vua/v27ba48/LyqiC66nXw4EEeffRRunXrRrt27Rg5ciTLli2rUFvTp08nJCSELl26kJOTU6Z7MjMz6dSpEyEhIXzzzTcV6vell14iJCSE559/vtjxot/Db7/9Vua2zpw5Y7vv5MmTFYqnNCkpKSQkJBQ79vHHHxMSEsK9995bZf1UtQEDBhASEsLHH39s71BERMSOzPYOQERErl316tWjc+fOJY6fO3eOc+fO4ezsTGhoaInzrVq1uhrhXXM2b97M3//+dywWC40aNaJevXocPXqUyZMnc/LkSf7xj3+Uq70777yTr7/+mvT0dDZt2sTQoUOveM+6devIzMzE1dWVESNGVPRRHNrcuXP57LPP+OCDD/Dz87N3OCIiIuWmRIKIiNhNv3796NevX4njH3/8MZ988gl+fn4sWrToqsf1zjvvkJWVhY+PT6Xbat++PatXrwbAbHbc/9u1WCy88sorWCwWHnvsMZ5++mkMBgNLlizhtdde46uvvmLMmDE0bty4zG22adOG66+/nsOHD7NixYoyJRJ++OEHAIYMGYKnp2eFn6c0Rb+H6667rkrbLa+333671OP33Xcfw4cPp06dOlc5IhERkfJRaYOIiMhfXHfddbRo0QJfX99Kt1WnTh1atGhBixYtqiCy6nP06FEuXLgAwMMPP4zBYABgzJgxeHl5UVBQwMGDB8vd7h133AEUznZITU297LXnzp1jx44dANx1113l7utKin4Pjvqi7uvrS4sWLeye6BAREbkSJRJEREQEV1dX278fPXrU9u/p6elkZ2cD4O/vX+52b7vtNlxcXLBYLKxdu/ay1/70008UFBTQtGlTunXrVu6+RERE5Opw3DmWIiIiVxASEgLAtm3bmDFjBhs2bMBoNHL99dcze/ZszGYzeXl5rFy5kjVr1nD48GFSUlIwm834+/vTvXt3JkyYQLNmzYq1O27cOHbs2MGjjz7Ks88+CxQuunfzzTdTv359tm7dyrJly1iyZAlRUVFA4boNY8aMYfTo0bZv86FwscUHHngAgMOHD9vKG1566SV++OEHpk6dSp8+ffj000/Ztm0bSUlJ+Pr60qdPHx577DECAwNLPHdeXh4//PADS5cuJSYmhoKCAkJDQ5k0aRJOTk488MAD3HDDDSxYsKDMP8vg4GCaNWtGTEwMU6dOZcmSJbi6uvLGG2+Qm5tLcHAwnTp1Ksdvp5CXlxeDBg1i5cqVrFixgjFjxlzy2h9//BH43ywGAKvVysaNG/npp584ePAgiYmJANSvX58uXbrwwAMP0K5duzLFUvR5mTNnDj179ix27vDhw8yaNYvdu3eTnJxMUFAQ99xzD3379r1smzt27GDp0qXs3buXCxcukJeXh4+PDx07dmTs2LH06NHDdm3R77zIhAkTgMJSh9GjR9tKejp37lxqSc/atWtZunQphw4dIj09HW9vbzp16lSin78+74EDB/j111+ZP38+4eHhWCwWmjVrxu233859992Hk5NTmX5+lZWdnc3ixYtZvXo1UVFRWCwWAgIC6NmzJw899BBNmzYtcU9qaiqzZ89m48aNnDx5EoPBgL+/PzfccAMPPPCA7Rn/bMuWLXzzzTfs37+ftLQ0PDw8aNWqFUOHDuWuu+7C2dn5KjytiEjtpkSCiIjUeE8++SR79+6lVatWJCUl4efnh9lsJjs7m0ceeYTt27cD0KhRI1q1akViYiInTpzgxIkTrFixgm+++Ya2bduWqS+r1co///lPfvrpJ7y8vGjWrBmnT59m37597Nu3j5iYmBK7BVzOkSNHePfdd8nMzKRJkyYEBQURFRXFsmXL2LhxI99//z0NGza0XZ+Tk8PTTz/Npk2bAAgKCsLd3Z1du3bxxx9/MGjQoHL85IqbOnUqEyZMICoqiscff5z09HQOHTqEn58fH3zwASaTqULt3nnnnaxcuZKdO3dy7ty5Ys9TZP/+/cTExGA2mxk9ejRQ+LN+/vnnWblyJQABAQEEBweTkpLC2bNnWb58OatXr+azzz4rda2Nslq+fLltfYi6desSHBxMbGws06ZN44Ybbrjkfe+99x5ffPEFUFiW0Lx5c9LT04mNjWXdunWsW7eOadOmcffddwPQtGlTOnfuzJ49e4DC5JOHhwf16tW7bHwWi4Vnn32WX375BQA/Pz9at27NmTNnbP2MHz+el19+udT7P/jgA2bPno2bmxtBQUHEx8cTHh5OeHg4+/fvr5LdSa7k/PnzTJgwgePHjwOFPwt3d3eio6P59ttv+fHHH5kxYwbDhw+33ZOSksKYMWM4efIkzs7ONGnSBCcnJ06ePMmyZcv46aef+Oyzz4ole+bPn8+bb74JFM6gad26NcnJyezYsYMdO3awZs0a5s6dW+HPsoiIFFJpg4iI1HiHDh1iwYIFLF++nF9//ZXXXnsNgC+//JLt27fj4+PD0qVL2bhxI9999x1hYWEsXboUPz8/MjMzmTlzZpn7SkxMZOXKlUyePJk//viD77//nq1bt9p2GJgzZw5JSUllbm/JkiW0bNmS1atXs3btWlatWsXixYtxd3cnKSmJ2bNnF7v+008/ZdOmTXh7ezN//nzWrVvHDz/8wMaNG+nWrZvtZbMibrzxRiZOnAjAH3/8waFDh7j55ptZtmwZLVu2rFS7gYGBWK1WVqxYUeo1RbMR+vfvT/369YHChRdXrlyJq6srX3zxBb/++ivfffcdGzZsYOXKlQQHB5OXl8dHH31U4dhOnz7N5MmTsVgsTJgwga1bt/Ldd9+xbds2/vGPf9jWbPir7du388UXX2A0GnnrrbfYtm0b33//PevWrWPDhg22BMSHH35IQUEBAI8++mixmQYvv/wyixYtumISZMaMGfzyyy+4ubnx4Ycf2mbEbNu2jSlTpmA2m5k7dy5z584t9f7Zs2fzt7/9jT/++IMff/yRLVu28MgjjwCFC1CGh4eX98dWLvn5+Tz66KMcP36cZs2a8dNPP7F27Vq+//57tm3bxl133UVOTg4vvvgi+/fvt9331VdfcfLkSTp37szmzZtZtWoVP/74I7/++iuDBw/GYrHw1ltv2a5PS0vj3XffBeD//b//x5YtW/juu+/YuHEjs2bNwtXV1ZZMEBGRylEiQUREarxhw4bZauqNRiPe3t4A/PbbbxiNRp544gnat29f7J727dtz7733AhAREVGu/saOHcsDDzxg+1bTxcWFV155BYPBQF5eHgcOHChzW05OTnzyySfFyis6depk+1a+6NtrKHxRmjNnDlC4s0T37t1t5wICAvjPf/5T4e0Es7KyePvtt23tFxk0aBANGjSoUJtFDAaD7XlKSyTk5ubadlT48yKL27Ztw2w2M3bs2BIv2y1atLAlPcr7+/uzWbNmkZubyw033MBLL71km/ZuMpl45JFHbHH/1ZYtW3BycmLQoEHccccdGI3/+ytVgwYNePrpp4HCxFNROUZFnD9/nsWLFwMwffr0YjtfmEwm7rvvPltfn3zyCRkZGSXauOmmm3juuedwcXGx3ffMM89Qt25doPhnrDqsWbOG8PBwXFxc+PLLL2ndurXtnIeHB//3f/9Hnz59sFgsxWZHFK3VMWTIkGILn3p6evLqq6/Ss2dPunXrZlvDIyYmhpycHOrWrVtsZgNA7969eeSRRxgyZMhVK+UQEanNlEgQEZEar0uXLqUeX7RoEQcOHOCee+4p9XzR6v1FLyJlddNNN5U45uPjY3vZSUtLK3NboaGhpb78N2/eHICLFy/ajm3evJnc3Fyuu+46+vfvX+IeT0/PS774Xk5iYiL33HMPc+fOxcnJiVdffZXrr78egNdff922W4PVauWXX37h3Llz5e5j9OjRGI1GIiIiOHbsWLFzYWFhpKSkEBAQQJ8+fWzH33vvPQ4cOGBbp+Kvin5/ubm5tm/9yyssLMwWX2mKkk1/9fzzz3Pw4EH+/e9/l3r+z4tXlvfz9We//voreXl5+Pn5lXg5LnL//ffj5OTExYsXS51BMWDAgBLHTCYTQUFBQPk+rxWxceNGWxyX2j60aL2IHTt22D7zRWsmfPXVVyxfvrzYWAgICGDOnDlMnz7d9rMODAzEbDaTmprKSy+9VGzRUIC///3vfPTRRwwePLhKn09E5FqkNRJERKTGu9y38E5OTqSmprJv3z5OnDjB6dOnOXHiBOHh4bbtDsv7EhoQEFDq8aIXmvz8/CprKy8vz3YsMjISoNQF5oqEhoaWue8izzzzDEePHsXf3585c+bQsmVLBg4cyJ133smFCxd44okn+O677zh//jxPPPEEUFiK0KZNmzL30bBhQ3r27MnWrVtZsWJFsWcoWoBw1KhRJWrXTSYTOTk57N69m+PHj9t+f0ePHi2W0CgoKCg2K6AssrOzbW0EBweXek3r1q0xGAxYrdYS5wwGAwaDgV27dhEVFcXp06c5deoUx44d4+TJk8Viq6iiNQXatGlzyedzc3OjWbNmREREEBMTUyLRVZWf14qIiYkBsCWnSlN0Lj8/n5MnTxIaGsrDDz/MmjVrSEhI4IUXXsBsNtOuXTt69uxJ37596dChQ7GFTevVq8fEiROZOXMmP/74Iz/++CN+fn7ceOON9O7dm759+1bJlq4iIqJEgoiI1AJ//vb3z9LT03nzzTdZsWIFFovFdtzJyYnrr7+eNm3asGXLlnL3d6Wp0aW9dFa0rT9LTk4GCl8cL8XDw6PM7QHs3LnT9i32m2++aVsLoWHDhnz88cc88MADnD9/nqeeesp2rnHjxuVKIhS588472bp1K6tWreIf//gHBoOBpKQktmzZgsFg4M477yx2fdFU92+++abYt/omk4lWrVrRvn37K24peTmpqam2f7/Uz9TZ2Zk6deqQmZlZ7LjVamXWrFl8/vnnxb7RNxgMNGvWjJEjR/LTTz9VOLYi6enpQOFsk8sp+r2XVtpQlZ/XiijLM/z5c1v0DA0bNuSnn37i888/Z82aNcTFxbF371727t3Lp59+SqNGjXjllVcYOHCg7d5nn32W0NBQvv76a3bt2kVCQgIrVqxgxYoVmM1mhg8fzpQpU6748xQRkctTIkFERGqtxx9/nO3bt+Pq6sr9999Phw4dCA4OJigoCCcnJ5YsWVKhRIK9FE3lL3oxK01pL5KXs2/fPqDwJe+vWx127tyZN954g1deeYXdu3eze/duANsuBOV188034+3tzdmzZ9m1axfdunVj5cqVWCwWevToUWLa+5QpU/j+++8xmUzcfffddOvWjeDgYJo2bYqrqyvbtm2rVCKhaC0NuPTP1Gq1kpubW+L4p59+yscffwzA8OHD6du3Ly1btqR58+a4u7tz4sSJKkkkuLu7A8VLXEpTlMwout6RlOUZ/pyM+fMz1KtXj1deeYVXXnmFY8eOsWPHDv744w+2bt1KbGwsTz31FIsXLy62BsqgQYMYNGgQ6enptt0aNm/ezPHjx20lEuVZYFVEREpSIkFERGqlffv22bZ9/Pzzz7nxxhtLXHP+/PmrHValtGrVCrj84oJ/rQu/kqJvq7Ozs8nNzbUtNljkjjvuICIiwrYjQL169Rg3bly5+iji7OzMiBEjmD9/PqtWraJbt26sWrUKKL7IIkBcXJyt5GH69OnccccdJdqr7O/PxcWFRo0aERsbS3h4eIkFOaGwtODP5SVQOFNi1qxZQGHd/VNPPVXlsRUpWisjPDz8kuUb6enpnDhxAsC27oEjad68OUeOHOHw4cOXvKZoHQ6DwUCTJk2Aws9ATEwMHTt2xNXVlZCQEEJCQhg3bhwXLlxgzJgxxMbGsnLlStq3b092drbt59C6dWs8PDwYMGAAAwYM4KWXXuKLL77gvffeY9OmTVy8eFGzEkREKkGLLYqISK105swZ27+Xtm5AVlaW7SW2umvEq0r//v1xcnLi3LlzbN26tcT5nJwc2zaKZdW5c2eg8OX4Uvf+edeGpKQk2+J5FVFUvrB+/XpiY2PZv38/3t7eDBo0qNh1Z8+etU25L622vqCggO+//9723xX9HRYtvPftt9+W2sbSpUtLHEtOTraVOlyq7v/P9/01EVFU11+WkoK+fftiNptJSEiw7WzxV19//TV5eXnUqVPHtu2kIylas2Hjxo2cPn261Gvmz58PQMeOHfHy8iIvL4/bb7+dBx980LYg5p/Vr1/fllgrWoPi22+/ZeTIkbzwwgul/mx79uxp+/eaMuZFRByVEgkiIlIrFX2TC4XT0P+8RkJUVBSTJk2yfXuZlZV1tcOrkPr16zN27FgAXnrppWLb9iUnJ/PMM88US6CURfv27W1bK/773/9m586dtnNJSUn83//9HzNmzAAKv+22Wq28+OKLl3ypvZKQkBBCQ0NJSEjgX//6F1arldtuu63ETIigoCDbwotffvllsd/R2bNnefrpp9m1a5ftWEV/hw8//DB169bl8OHDvPzyy7YSB6vVysKFC20vuH/m6+trK4uYO3cuKSkptnNJSUlMnTqVlStX2o79ddeGovUYzp49e8X4GjZsyJgxYwB47bXXWLNmje1cQUEBCxcutJVYPP7441ftW/asrCySkpIu+7+ikpChQ4cSEhJCTk4OkyZNKjZrJj09nddee42tW7diNpt5/vnnATCbzdxyyy1A4dodf91Sdd26dbZkWlFJzrBhw3ByciIiIoK33nqr2LoWSUlJtq0lO3ToUKysRUREyk+lDSIiUiu1bduWYcOG8fPPPzN79my+//57AgMDSUlJsb1s9+rVi23btpGRkUF6enq5Fyq0h+eee47w8HB27NjBvffeS9OmTXF3dycyMpK8vDxCQ0M5dOhQid0PLuedd95h0qRJHDx4kPvvv9+2BsHx48fJzc2lTp06TJkyhSFDhvDQQw+xb98+nn32WTw9PYtt11hWd955J4cOHbK9FP+1rAEKX9YnTJjAV199xcqVKwkLCyMoKIiMjAxOnjyJ1Wqle/fu7N69m7y8PM6fP1+hl0M/Pz8+/PBDnnjiCX766Sd++eUXWrRowfnz50lISGDAgAFs3ry52DfYZrOZp59+mjfeeIMdO3bQv39/mjZtSm5uLidPniQvL4+2bdty7tw5kpOTOX/+fLGZC23btmXnzp1MmzaNRYsWMXbs2BILTf7Zyy+/TFxcHBs2bODpp5/G39+fBg0acPr0adsCnPfffz+TJk0q9/NX1KxZs2zlHZfy6aefMnDgQMxmM5999hmTJk3i+PHjjBw50va5jY6OJjs7G1dXV9544w26du1qu//ZZ59l9+7dHDlyhLvuuotGjRrh4+NDfHw88fHxQOH2nEWJBH9/f9566y1eeOEF5s+fz7Jly2jSpAn5+fmcOnWKnJwcfHx8ePPNN6vvByMico3QjAQREam13nvvPaZPn067du2wWq0cO3aM3NxcbrrpJj7//HNmz57NddddB1Cp6fpXk6urK7Nnz+all16ibdu2xMfHc+LECbp27cq8efNsU/UvtZNFaXx8fFi4cCGTJ0+mQ4cOJCQkEBMTw3XXXcf48eNZvXo1o0ePxt3dnVmzZjF06FBGjhxJ7969K/QMt956qy2+9u3bX3I7yxdeeIEPP/yQLl264OzszLFjx7h48SI9evTg3//+N/PmzaNTp04AbNq0qUKxAPTo0YMffviBu+++Gx8fH44dO0adOnV48skn+eijj0q9Z+zYscydO5devXrh6elJZGQkiYmJdOjQgSlTprBkyRLbTI+/xvbWW2/Rq1cvzGYzMTExtpkxl+Ls7Mynn37K+++/T+/evcnNzSU8PJw6depwyy23MH/+fF577bViWyE6msDAQL777jtefPFF2rdvT0JCAtHR0TRs2JAHHniAn376idtvv73YPe7u7ixYsICnnnqK66+/npSUFI4ePYrVauXmm2/m888/Z+rUqcXuGTFiBAsWLGDIkCF4eXkRHR1NbGwsQUFB/O1vf2P16tWX3OpTRETKzmCt7j1/RERE5Kp55513mD17NmPGjGH69OnV1s+lFv4TERGR2k9/AxAREakhYmJi6N+/P+PHjy91S0Kr1WrbzrJt27bVGouSCCIiItcu/S1ARESkhmjcuDE5OTn8/vvvvPvuu8UW8bt48SJTp04lMjISX19fhg4dasdIRUREpDZTaYOIiEgNsmbNGp577jny8/Nxd3cvtphcdnY2Xl5efPzxx9x44432DlVERERqKSUSREREapjjx48zd+5cdu/ezblz54DCbQL79evH/fffb1tAUkRERKQ6KJEgIiIiIiIiImWmNRJEREREREREpMyUSBARERERERGRMjPbO4BrndVqpaCgeqpLjEZDtbUtImWnsSjiGDQWRRyDxqKIfRmNBgwGQ6XaUCLBzgoKrCQlZVR5u2azER8fd9LSMsnLK6jy9kWkbDQWRRyDxqKIY9BYFLE/X193TKbKJRJU2iAiIiIiIiIiZaZEgoiIiIiIiIiUmRIJIiIiIiIiIlJmSiSIiIiIiIiISJkpkSAiIiIiIiIiZaZEgoiIiIiIiIiUmRIJIiIiIiIiIlJmSiSIiIiIiIiISJkpkSAiIiIiIiIiZWa2dwAiIiIiIiL2YrVayc/Pw2q12jsUkXIxGAyYTGYMBsNV71uJBBERERERuebk5Vm4eDGF3NxsrNYCe4cjUiEGgxFnZ1c8Pb0xm52uWr9KJIiIiIiIyDUlNzeH5OR4jEYj7u6eODm5YDQagav/za5IxVgpKCjAYskhKyuDxMTz+Pj44+zsclV6VyJBRERERESuKenpKZhMZnx9A/6bQBCpmVxc6uDm5kVSUhzp6Sn4+gZclX41akRERERE5JqRn59Pbm427u6eSiJIrVA0syY3N5v8/Pyr0meNmZEQExPDp59+yu7du0lMTKRBgwYMGzaMRx55BHd393K1tWPHDr766iv2799PRkYG9erVo2fPnjz66KMEBQWVuP67777jlVdeuWR7wcHBrFy5stzPVF0KCqyEn0jCEpOMk8FKi+vqYjRqmpaIiIiISEFB4YvW1awnF6luJlPh57mgIB+TyVTt/dWIRMKBAwd48MEHyczMpEOHDrRr1449e/Ywc+ZMNm7cyMKFC/H09CxTW0uXLuW1117DarUSGhpKw4YNCQ8P5/vvv2fNmjXMnj2bTp06Fbvn8OHDAHTv3h1/f/8SbTZs2LDyD1lFdh+LZ+H6SJIv5tiO+Xi6MHZgMF1CSsYuIiIiInJt0hdtUntc7Z0bHD6RYLFYeOaZZ8jMzGTGjBmMGjUKgOzsbJ599lk2btzIe++9x9SpU6/YVlJSEm+++SZGo5EPPviAwYMHA4XTm2bMmMH8+fN59dVXWbVqVbH7ihIJU6dOpXnz5lX7gFVo97F4Pv3hUInjyRdz+PSHQ/x9VKiSCSIiIiIiIlIpDl8UtGrVKmJjY+nVq5ctiQDg6urKW2+9hZubG8uWLSMtLe2Kbe3atYusrCw6duxoSyIAmEwmnnvuOUwmE1FRUSQlJdnO5efnc+zYMTw8PGjWrFnVPlwVKiiwsnB95GWvWbQ+koIC7Y8rIiIiIiIiFefwiYRNmzYBFHvxL+Lj40P37t2xWCxs3br1im0VLaaSkJBQYhGK1NRU8vPzcXJywsPDw3Y8OjqarKws2rZte9Wni5RHxOmUYuUMpUm6mEPE6ZSrE5CIiIiIiIjUSg5f2hAREQFASEhIqeeDg4PZtGkTx44dY/jw4Zdtq2vXrri7u3Pq1ClefPFFnnzySRo0aEBERATTpk0DYNy4cTg7O9vuOXLkCAABAQG88847bNq0ibNnz+Lj48NNN93E448/Xuq6CVdbSsblkwjlvU5ERERERK5ts2Z9zpw5X5brngkTJvHww3+r0jjuvPM2zp8/x5w53xAcXPp7YVn07t0VgJ9/3lTmNfakdA6fSIiLiwMKX+RL4+fnB0B8fPwV2/L29ubjjz/m+eefZ+XKlcV2WnB1deWNN97gnnvuKXbPoUOFaw6sWLECDw8PunXrRsOGDTl8+DCLFi3il19+Yd68ebRs2bJCz1dVvN1dqvQ6ERERERG5trVsGczgwcOKHcvKymLLljCAEueK7pHaz+ETCVlZWUDhi35pio5nZmaWqb2QkBBuvfVWFixYQNu2bW0zEk6fPs28efMIDQ0lNDTUdn3RjIRBgwYxY8YMW9nDxYsXmTx5MmvXruXpp59m+fLlFd5mw2yufIVJ22a++Hq6kHSZ8gZfLxfaNvPVVpAiV5HJZCz2TxGxD41FEcfgCGOxoEB/Fy6rfv0G0K/fgGLHzp07a0skTJky/arE8eGH/yEvL4+GDa+rVDvffLMMAHd396oIyyGZTIYrvl9WRcW+wycSTCYTBQUFV7zOar3yIoJnzpxh3LhxpKWlMWfOHHr06GG7d968ebz99ttMmDCBlStX2mZAzJ49mzNnztCkSZNiJQ+enp689dZb7N27l6ioKLZu3Uq/fv3K/XxGowEfn6r5IP9tdHvenrfz0udHtadePY9LnheR6uPlVcfeIYgIGosijsKeYzE728SFC8YyvXBVtYICK8dOJZOSnou3hzMhTXxq3Jd8f04CXa2fX1BQkyppp0ULx92Br7IKCgwYjUbq1nW75JfwVcnhEwnu7u6kpKSQk1P6N+3Z2dkAuLm5XbGt999/n7NnzzJ58mRbEgEK99wcP348hw4dYsWKFcybN48XX3wRKJzxcKmyBQ8PD2688UaWL1/OwYMHK5RIKCiwkpZWttkUV9KmcV2evLM936w9VmJmgslowNvNTHJyRpX0JSJlYzIZ8fKqQ1paFvn5V06Kikj10FgUcQyOMBZzc3MoKCggP99KXt7Vi2H3sXgWro8stkC6j6cLYwcG16gt2v/8eyvt57d69QreeusNJk58FCcnJxYt+pqsrEyaN2/Jf/4zC7PZTGZmBt9/v5StW3/l5MkTZGZm4ObmTsuWwdx22ygGDx5arM3S1kh44olH2LdvD99/v4qdO7fzww/LOHHiOGazmeuvb8+4cePp2LFzsXZKWyPhzjtvIyEhng0btrF06WJWr15ObGwsdeq40qlTF8aPn1RquUZUVCQLFsxm//59pKWl0bhxE+64YwxBQU35+98nMWzYrUyePLVSP+vyyM+3UlBQQGpqJllZ+Ze9tm7dOraNCCrK4RMJ/v7+pKSkkJCQQMOGDUucL1oboSwLHm7fvh2Avn37lnq+f//+rFixwrYuQlkUxVRUglERVfkHWKeW9enQvB7RZ1OxWA2YDVaWb43hyIlkvlxxhJfGdq5xWU+R2iA/v+Cq/mVFREqnsSjiGOw5FvPzr/526LuPxfPpDyXfMZIv5vDpD4f4+6jQGpVMKIt1637m9OlTdO7cDQBv77qYzWbS0lJ5/PGJnDgRQ7169WjXrj0mk5mYmOPs3bubvXt3Ex9/nvvvH1+mfj766P8RFraBli1b0b17DyIjI9i+/Td27drOBx98RqdOXcrUzpQpL7NlSxht2lxPjx49OXToIGFhG9m+/Q9mzZpPkyZNbdf+/vs2Xn31RXJycmjZshWhoe2Jjo7kX/96k9DQ9uX7QVWxsiTIyjCZ/4ocPpEQEhJCREQEkZGRtG9f8pcSFRVlu+5KUlNTATCbS3/sojUOLBYLULhN5Icffkhqairvv/9+qfedO3cOoNQkh70YjQbaNPXFx8ed5OQM6nm68uqs7USdSWXD7jMM6tbY3iGKiIiIiDg0q9VKrqXyyY6CAivf/BJx2WsWro+kbVDVrGXm7GR0iG3rT506yfPPv8ztt98BYCtXnzdvNidOxNCrVx/efPPftncsq9XK11/P5fPPP+XbbxeWOZGwbduvvP32u/Tp0x+A/Px8pkx5ic2bN/H11/PKlEjIz89n797dfPbZV7Rr1wEonPn+zDOPc+jQAZYsWcTzz78MQFpaGm++OZWcnBz++c9Xue22223xz5nzJbNnf1HWH1GN5vCJhKJZAuvWreOOO+4odi45OZnt27fj4uJSrFThUlq2bMmRI0fYuHEjDzzwQInzW7duBaBt27ZA4ToIK1asIDs7m+3bt9OrV69i16emphIWFobBYKBPnz4VfcRqV6+uK2NuasmCtcf4bnM07VvWI8DnyqUgIiIiIiLXIqvVyttf7yEqNvWq9Jd8MYe/f/BrlbTVMrAuL9/X2e7JBDc3d269daTtv4um0nt6enLjjT15/PGni31RazAYGDXqLj7//FOSk5PIycnGxeXKtf5Dhgy3JRGg8Mvhu+66l82bNxETE13meO++e6wtiQCFJe4jR47m0KEDHD/+v3bWrl1NSkoyN988yJZEKIr/oYceYc+eXezbt6fM/dZUDr908cCBA2nUqBFhYWEsXrzYdjw7O5vJkyeTmZnJmDFj8PX1tZ2zWCxER0cTHR1tm10AMHbsWAA+/PBDdu4svijh0qVL+e6773BycrJd5+rqyujRowGYNm0asbGxtutTU1N56qmnSEtLY+TIkQQFBVX9w1ehfh2vo02QD7l5BcxZfZSCqpjPIiIiIiJSW9n/S/0arUWLFqXO6B4/fiLvvvsRQUFNbceysrI4evQIa9eush2zWPLK1E9ppQT16/vZ2i2rPycR/tpOdvb/2tm58w8A+ve/udR2Bg4cXOY+azKHn5Hg6urKO++8w8SJE3n99ddZsmQJgYGB7N27l/j4eEJDQ3n22WeL3RMXF8fw4cMB2LBhA4GBgQDcddddHDx4kG+//Zb777+fdu3a0aBBA6KiooiJicHJyYk333yTFi1a2Nr6xz/+wZEjR9i3bx/Dhw+nc+fOuLq6snPnTi5evEiXLl2YMmXK1fuBVJDRYGD8sNZMmbWDiNMpbNoTy81dAu0dloiIiIiIwzEYDLx8X+cqKW2IOJ3C+0v3X/G6Z+/qQKvG3pXuz1FKG7y86l7yXHx8HD/8sIz9+/dy+vQpkpOTAIrFXZZd+QA8Pb1KHCsqWbday/77K1p8sbR2Cgr+F8v584Wl7Q0alF7a3rBhozL3WZM5fCIBoFu3bixdupRPPvmEHTt2EBUVRWBgIGPGjGHChAnl2gd02rRp9O3bl0WLFnHo0CHCw8Px8fHh1ltvZeLEibRp06bY9R4eHixYsIAFCxawYsUK9uzZg9FopFmzZowYMYL77rsPJyenqn7kauHnXYc7+7fgm18iWBYWTfsW9fDz1jZYIiIiIiJ/ZTAYcHE2Vbqd65v54uPpUmy3hr/y9XTh+mZVs0aCo7jUrgBhYRt4441XsVgs1KtXn7ZtrycoqCktW7aiY8fOjB59S7n6qaqkSVnbycsrnClxqV1HypoAqelqRCIBoFWrVnz00UdlujYwMJBjx45d8vzAgQMZOHBgmft2dnbm4Ycf5uGHHy7zPY7qps6N2Hk0nojTKcz9+SjP39PRITKWIiIiIiK1kdFoYOzA4FJ3bShy78DgWpVEuJSsrCxmzJiOxWLh2WdfYPToMcXeRdLSrs6aFJXh7x/AqVMniYs7R2houxLn4+LO2yGqq8/h10iQqmU0GJgwvDXOZiPhJ5PZvP+svUMSEREREanVuoT48/dRofh4uhQ77uvpUiu3fryU48ejSU9Px9vbmzvuuLvEF5p//PGb7d/LU5ZwNXXr1h2AX38NK/X85s2brmI09lNjZiRI1QnwcWN0vxYs3hDJko1RtGtWj3p1r7wiqoiIiIiIVEyXEH86BfsRcTqFlIwcvN1daNXY+5qYiVDE29sbgJSUFPbv30eHDh1t53bv3smHH75r++/c3NyrHF3Z3HLLSL7+eh4bN/7CDTfcyC23jLCdW7JkITt2/A5UXcmFo1Ii4Ro1sEsgu47GExWbytw1R3luTIda/2EXEREREbEno9FA6yAfe4dhN40aBdKv301s3ryJp576Gx06dMLLy4tTp05y/Hg03t7e1KtXj8TERBITE227JjgSb29vJk9+ncmTX+Ttt6exbNliGjcOIiYmmpiY4wQGNuHMmVOYTLX7VVulDdcoo7GwxMHJbORwTBJbD5yzd0giIiIiIlLLvf76mzz22JMEBTUlPPwwv/++jfz8fO6++z7mzVvMgAGF2yeGhW2wc6SX1rt3P2bOnE3v3n2Ji4tj69bNmM1mXnttGrffPhooXLS/NjNYr5VlJR1Ufn4BSUkZVd6u2WzEx8ed5OQM8vIuXV/08/aTLN0UTR0XM/83sXuJui0RqZyyjkURqV4aiyKOwRHGosWSS2LiOerVa4iTk7NdYpCaKy7uPDk52QQENMTFpeS703vvvcMPPyzlhRdeYeTI0VctrvJ8rn193TGZKjenQDMSrnFDujWhWUMvsnLymLfm6DWzXYmIiIiIiEh57dy5nbFj7+TFF5/BYrEUO3fgwD7WrFmJs7MLPXr0slOEV0ftLtyQKzIaDTx0SxvemLODA9GJ/HboPL3aNbR3WCIiIiIiIg5nwICBfP31PHbv3smoUcNo2zYUZ2cXzp8/x9GjRzCZTLz00mv4+wfYO9RqpRkJQqP67ozs3QyAResjSUnPsXNEIiIiIiIijsfNzZ0vv5zHo48+QUBAQw4fPshvv20hJSWZoUNv4Ysv5jFs2K32DrPaaUaCADC0exN2HUvg5PmLLFh7jCdGt9MuDiIiIiIiIn/h6enJ/feP5/77x9s7FLvRjAQBwGQ08vDwNpiMBvZGXmB7eJy9QxIREREREREHpESC2AT6e3Bbz6YALPwlktSMXPsGJCIiIiIiIg5HiQQpZniPIBr7e5CeZeGbdcfsHY6IiIiIiIg4GCUSpBizycjDtxSWOOw6lsDOo/H2DklEREREREQciBIJUkKTAE+G3xgEwNfrjpGWqRIHERERERERKaREgpTqtl5NaeTnzsVMCwt/ibB3OCIiIiIiIuIglEiQUplNRh4a3gajwcCO8Hj2RCTYOyQRERERERFxAEokyCU1a+jF0O5NAJi/9hjpWRY7RyQiIiIiIiL2pkSCXNbI3k1pWM+NtIxcFq1XiYOIiIiIiMi1TokEuSwns4mHhrfBYIDfD8exL+qCvUMSERERERGpdlar1d4hOCwlEuSKWjSqy5Bu/y1xWHOUzGyVOIiIiIiI1HYvvPA0vXt3Zfr0KWW6fvPmTfTu3ZW77hpZrpfwPXt20bt3V8aPH2s7du7cWXr37srQof3L3M6sWZ/Tu3dXPvzwvTLfcym//76Vf/zjyWLHKhJTbaVEgpTJ7X2aEeDrRkp6Los3RNk7HBERERERqWa33TYKgF9/3URWVtYVr1+1avl/7xuJwWCo1tiqU3R0FC+88AynTp20dygOS4kEKRNnJxMPDW+NAdh68BwHjyfaOyQREREREalGPXv2pn59P7Kysti8eeNlr01MvMD27b9hMpm45ZYRle7bz8+fb75Zxpdfzq90W+VVUJBf6nF7xuRolEiQMgsO9ObmroEAzP35KJnZeXaOSERERESk5iiwFhCRHM2u83uJSI6mwFpg75Auy2w2M3z4bQCsXbv6steuWbOK/Px8evfuS7169auk76CgpjRu3KTSbVUVR4zJXsz2DkBqljv6tuBAVCLxKVks2RTF+GGt7R2SiIiIiIjD2xd/kKWRy0nJSbUd83apy13BI+jo386OkV3ebbfdzoIFc9i9eycXLiRQv75fqdetXr0CgJEj7wDg+PFoli5dxN69e7hwIZ6CggJ8fHzp1KkL998/nqZNm12233PnznLXXSPw8PBgzZqwYudiYo4zf/5s9u7dzcWLabRoEcwDDzx02fZ+/30rK1b8RHj4YVJSkjGbzQQENKRnz97cf/94vLy8AHjzzan8/PNKAM6fP0fv3l1p0KAhy5atuGxMSUmJLFy4gG3bfiUu7jzOzs60bNmKW24ZwdChtxQr9dizZxdPPfUot946kgkTJvHVVzPZseN30tLSCAhowM03D+b++8dTp06dyz6TPWlGgpSLi7OJCcMLkwe/7j/L4RNJdo5IRERERMSx7Ys/yJeHFhRLIgCk5KTy5aEF7Is/aKfIrqxhw+vo1q07BQUFrFv3c6nXHDp0gJMnT9CwYSO6devO1q2befjh+1mx4kfc3Opw4409ad++IxkZ6axZs4pJkx7kzJnTFYpnz55dPPLIeH75ZQ1163rTo0dv0tLSeOml5wgL21DqPf/5z8e88MIzbNv2K40aBdK7dz+Cg0M4ffokCxfO58kn/0ZeXuFs69DQ9vTo0QuAOnXqMHjwMPr27X/ZmCIjI3jggbtZvPhrsrKy6NGjF61bt+XIkUO8+eZUXn31RVv7fxYbe4aHH76fLVs207JlCJ06deH8+XPMmzeLV155vkI/n6tFMxKk3EKa+DCgcyM27oll7uqjTHv4Buq46KMkIiIiIrWH1Wolt6Dyu5UVWAtYEvHTZa9ZGrmcEN9gjIbKf8/rbHSq8oUOR4wYxY4df7B27WrGjn2gxPmiRRZHjLid/Px8/vWvt7BYLEyd+iYDBw6xXXfx4kWee+4JwsMPs3z5Dzz++FPliiMnJ5u33nqDrKxMnn76ee666x4ACgoK+PzzT/nmm3kl7omKimThwvl4eHgyc+bsYjMhTp48wSOPPEh0dCQ7d26nR49ejBw5mrZtr+f337dRt643U6ZMv2xMubm5vPzyP0hJSWHUqLt46qnncHJyAgoTBc8//xSbN29izpwvmTTpsWL37t27mxtv7MmUKdPx8qoLwJEjh3j88Yns3Lmdw4cPcf31oeX6GV0tevuTCrmzfwsORCdyITWbZZujGTc4xN4hiYiIiIhUCavVyv/b8xnHU6/Oqv0pOak8/2vZtli8kuZ1m/Jc58eqNJnQu3c/fH3rER0dRWTkMYKD//d3/+zsbDZu/AWTycTw4beRlJRIt27dMZlMxZIIAJ6engwaNJTw8MOcP3+u3HFs3bqF8+fP0blzV1sSAcBoNPLoo0+wffvvREVFFLsnLS2V/v1vJjS0XYlyiqCgpnTu3I0tW8IqFA/Apk3rOX/+HC1btuLZZ1/AaPxfMqhRo0Bef/1NJk4cx5Ili3jggQm4uLgWu/+FF16xJREA2rYNpX37juzZs4uYmCiHTSSotEEqxNXZbFsfYdOeWI6eTLZzRCIiIiIiVanmbl9Y1f686OKaNauKndu0aT0ZGRn06dOPevXq4+8fwGuvTeOVV14vdt2FCxfYseMPDhzYB4DFUv7ZHrt37wCgR4/eJc4ZDIZSSxA6d+7K9OkzuPvu+2zH8vPziY09w6ZN6zl37myF44HCWQUAN988qFgSoUjr1m1o0iSIrKxMwsOPFDvn7x9AQECDEvcUrUORlZVdoZiuBs1IkApr29SXfh2vY/O+s8z5OZxpD3XHxdlk77BERERERCrFYDDwXOfHqqS0ISrlOJ/tn33F6x7v8BAtvZtXur/qKG2AwkUXv/lmHuvXr+Xxx5/GZCr8e3/RIosjRowudv3u3TtZvXo5kZERnD0bS3Z24Uvx/2KzljuGCxcSgMIX8NJcd12jUo9bLBbWr19LWNgGTpyI4fz5c+Tn51c6nj/HdKm+i86dOnXSdm0RT0+vUq8v+tlaHXhXDyUSpFLG3NSSg8cTSUjJ5rvN0Ywd1MreIYmIiIiIVJrBYMDF5Fzpdtr4tsLbpW6JhRb/zMelLm18W1XJGgnVpVGjQDp37sbu3TvYseMPevToRWzsGfbt28N11xUusgiF6xW8/vorbNq0HoPBQIsWwfTrN4CgoKa0bt2W2NgzvPfejEpGU/pLf9EL+J8lJyfx5JN/48SJGJydXWjdug1du95AUFAz2rVrz7Jl315xa8vLRlKG/ENBQWFCwMmp+OepOhI+V4sSCVIpdVzMjB/amv+3ZD8bdp+ha2t/WjX2tndYIiIiIiIOwWgwclfwCL48tOCS19wZPMKhkwhFRowYxe7dO1i7djU9evRizZpVWK1WbrvtdttL8S+/rGHTpvX4+wfw7rsf0bx5i2JtLF78dYX79/PzB7CVI/xVQkJCiWOff/4pJ07E0KXLDUyfPsO2zWOR9PSLFY4HoH79+gCcPRt7yWtiY88A4OvrW6m+HInjf1rF4YU2r0fv9g2xAnNWh5Njybd3SCIiIiIiDqOjfzsmhY7D26VuseM+LnWZFDqOjv7t7BRZ+fTt2x9vbx+2bdtCTk4O69evxWw2c8stI2zXHDy4H4Cbbx5cIokA8McfvwH/+5a+PG644UYANm/eWOr5bdt+LXGsKJ677x5bIomQmZnBwYMHSomn7DMFOnXqAsCGDb+U+kzh4YeJjT2Dh4cHISFtytyuo1MiQarEPQNa4u3hTFxyFj9uOW7vcEREREREHEpH/3ZM7/kyT3f6GxPa3svTnf7GtJ4v15gkAoCTkxPDht1KVlYmX389l9OnT9G7d198fevZrqlb1xuAHTv+sK2LAIXrFPznPx+za1fhgom5ubnl7r9Hj94EBTUlPPwIn3/+abEX92++mcf+/XtL3FMUz5Ytm7H+qQ4hOTmZV199ibS01BLxuLi4AJCRkXHFhMeAAYMICGhAVFQEH330Hnl5ebZzsbFnmD69cDeOESNG4+xc+VIZR6HSBqkSbq5OPDi0NR8uO8C6nafpEuJPy0Z1r3yjiIiIiMg1wmgw0sqn5Lf0NcmIEaNYtGgBCxbMAWDkyOKLLN522yi++24J0dGR3HXXCEJD25GXl8eRI4dITU2lefMWHD8eTVJSYrn7dnZ25vXX/4/nnnuSBQvmsGnTBoKDW3HyZAzHj0fTrl0H2wyEIvfeez8HD+5nxYofOHBgL82atSAtLZVDhw6Qm5tLs2bNiYk5XiyegIAAXF1duXgxjUcffYjAwMZMmTL9kjG9+ea/ef75p1i27Fs2b97E9deHkpGRwf79e8nNzaV377488sjj5X5eR6YZCVJlOrSsT8/QBlithSUOljyVOIiIiIiI1CaNGzehU6cu5OXlcd11jejatXux8w0aNGDWrAUMGjQUZ2dnfv99G4cOHaRp0+a89NKrzJ79DV5edYmOjuL06VPl7r9Vq9Z89dUCRo4cTW5uDtu2/YrBYGDy5KncfvsdJa7v06c/H374H7p0uYG0tDS2bt3MyZMn6N69Bx99NNOWIPj11zDb7AMXF1emTPk/mjQJIjLyGDt2/EFqasolY2rdug1z5y5izJh7cXFxYdu2LUREHKVduw5MmfJ/zJjx/zCba9d3+AartSzrTEp1yc8vICkpo8rbNZuN+Pi4k5ycQV7e1ds2JD3LwmtfbSc1I5dhNzbhrv4tr1rfIo7IXmNRRIrTWBRxDI4wFi2WXBITz1GvXsMSq+iL1FTl+Vz7+rpjMlVuToFmJEiV8qjjxANDQgBYs/0UMefS7ByRiIiIiIiIVCUlEqTKdWrlR/e2AVitMHtVOBZ98yMiIiIiIlJrKJEg1WLswGC83JyIvZDBit9O2DscERERERERqSJKJEi18HRz5v7BhSUOq38/ycnzF+0ckYiIiIiIiFSFGpNIiImJ4fnnn+emm26iffv2DB48mPfff5+MjPIvVLhjxw4eeeQRunfvTmhoKP369ePll1/m5MmTl7zn4MGDPPbYY/Tp04cOHTpw66238uWXX2KxWCrzWLVa19b+dG3tT4HVyqxV4eTlq8RBRERERESkpqsRiYQDBw4wevRoVqxYgZ+fH/379yczM5OZM2dyzz33cPFi2b/tXrp0KQ888ACbN28mMDCQ/v37Yzab+f7777n99tvZu3dviXs2bNjAPffcQ1hYGE2bNqV3797Ex8fz7rvvMmnSJCUTLuP+Qa3wqOPEmYR0Vv1+6USNiIiIiIiI1AwOn0iwWCw888wzZGZmMmPGDJYsWcJHH33E+vXrGTBgABEREbz33ntlaispKYk333wTo9HIxx9/zHfffccnn3zCunXreOCBB8jMzOTVV18tdk9KSgovvPACBoOBWbNmsWDBAj799FPWrVtHhw4d+P3335k7d241PHnt4OXuzH2DWgGw8rcTnI5Pt3NEIiIiIiIiUhkOn0hYtWoVsbGx9OrVi1GjRtmOu7q68tZbb+Hm5sayZctIS7vyNoO7du0iKyuLjh07MnjwYNtxk8nEc889h8lkIioqiqSkJNu5r7/+moyMDEaNGkXPnj1tx729vXn77bcBmDdvHgUFmrZ/KTe08adTcH3yC6zMVomDiIiIiIhIjebwiYRNmzYBFHvxL+Lj40P37t2xWCxs3br1im0ZjYWPm5CQQH5+frFzqamp5Ofn4+TkhIeHh+14WFjYJftv0aIFrVq1IiEhgYMHD5b5ma41BoOBB4aE4O5q5mTcRdZsP2XvkERERETkmme1dwAiVejqfp4dPpEQEREBQEhISKnng4ODATh27NgV2+ratSvu7u6cOnWKF198kRMnTpCdnc2BAwd44oknABg3bhzOzs62eyIjI6us/2tZXQ8X7h1Y+LNavi2G2ASVOIiIiIjI1WcwFL4C5WuWrNQiRZ/nos93dXP4REJcXBwAAQEBpZ738/MDID4+/opteXt78/HHH+Pr68vKlSsZMmQIHTp04K677iIyMpI33niDf/7zn7brU1JSyM7Oxmg04u/vX+n+r3U9rm9Ahxb1yMu3Mnt1OPkqBxERERGRq8xkMmE0msnJybJ3KCJVJicnC6PRjMlkuir9ma9KL5WQlVU4wF1dXUs9X3Q8MzOzTO2FhIRw6623smDBAtq2bUuDBg2IiIjg9OnTzJs3j9DQUEJDQ8vUd0X6L43ZXPX5HJPJWOyfjmLCLW145fM/iDl3kfW7znBLz6b2DkmkWjnqWBS51mgsijgGRxmL7u7upKdfxM3NHScnF7vGIlJZFksO2dkZeHh44uR05USCwVD5Ph0+kWAymcq0kKHVeuWakDNnzjBu3DjS0tKYM2cOPXr0sN07b9483n77bSZMmMDKlSsJCAiwralQFmXpvzRGowEfH/cK3VsWXl51qq3tivDxcWfS7aF8+O0+vv/1OP26NqFxgKe9wxKpdo42FkWuVRqLIo7B3mPRy8uV06dPk5KSgKurO3Xq1MFovDrf5IpUlYKCfLKysv6bRHCjcePrNCOhiLu7OykpKeTk5JR6Pjs7GwA3N7crtvX+++9z9uxZJk+ebEsiQOFigOPHj+fQoUOsWLGCefPm8eKLL+LuXviCf6m+y9t/aQoKrKSlVXw2w6WYTEa8vOqQlpblcPVfnVvWo13zehw8nsj/W7ibVx/oitFYBWkxEQfkyGNR5FqisSjiGBxpLHp61gNSyMzMICPjyjvAiTgik8mMm5sHnp7epKVll+meunXrlOtL89I4fCLB39+flJQUEhISaNiwYYnzRWsTXGoNgz/bvn07AH379i31fP/+/VmxYgWHDh0CwMPDAw8PD9LT00lMTKRevXqV6v9S8vKq7w/R/PyCam2/oh4cGsKrX20n6kwqa/44yeAbmtg7JJFq5ahjUeRao7Eo4hgcZSy6u3vj5laX/Px8rFb7xyNSHgaDEZPJhMFgoKCAMs3kB6jgZPpiHD6REBISQkREBJGRkbRv377E+aioKNt1V5KamgqA2Vz6YxdNA7FYLLZjrVq1Ys+ePURGRpaaSChP//I/vl6u3D2gJfPWHOO7X4/ToWV9AnwrNqtDRERERKSiDAbDJd8PRKR0Dr/iUP/+/QFYt25diXPJycls374dFxeXYqUKl9KyZUsANm7cWOr5rVu3AtC2bdsy9R8dHU1ERAT169e3LdAoZde3w3W0beqDJa+AOavDKaiK1JiIiIiIiIhUK4dPJAwcOJBGjRoRFhbG4sWLbcezs7OZPHkymZmZjBkzBl9fX9s5i8VCdHQ00dHRxWYXjB07FoAPP/yQnTt3Futn6dKlfPfddzg5OdmuAxg9ejQeHh4sWbKETZs22Y6npKTwyiuvADBx4kRlMSvAYDAwfmhrXJxMRJxJZePuM/YOSURERERERK7AYK3odgNX0c6dO5k4cSLZ2dlcf/31BAYGsnfvXuLj4wkNDWX+/Pm2hRGhcHeGm2++GYANGzYQGBhoOzdlyhS+/fZbANq1a0eDBg2IiooiJiYGJycn3nzzTUaOHFms/1WrVvH8889jtVrp3Lkzvr6+7Ny5k5SUFG666SY++eSTCicS8vMLSErKqNC9l2M2G/HxcSc5OcMh6s8uZ+OeM3y9LgJnJyPTHu6Ov7dW1JbaoyaNRZHaTGNRxDFoLIrYn6+ve6W3YK0RiQSAiIgIPvnkE3bs2EFmZiaBgYEMGzaMCRMm4OHhUezayyUSANavX8+iRYs4dOgQ6enp+Pj40L17dyZOnEibNm1K7X/Xrl18/vnn7Nu3j7y8PBo3bszo0aMZO3Yszs7OFX4uJRKgwGrl3UV7OXoqhdZNvHn+3k4Yq2JzUxEHUJPGokhtprEo4hg0FkXs75pKJNRWSiQUik/OZMrsHeRaChg3JISbOjWyd0giVaKmjUWR2kpjUcQxaCyK2F9VJBIcfo0EuTb4+7hxR78WACzZFMWF1Cw7RyQiIiIiIiKlUSJBHMbNXQIJDqxLTm4+834+iibLiIiIiIiIOB4lEsRhGA0GHhreBiezkcMnktly4Jy9QxIREREREZG/UCJBHEqArxuj+jQH4NuNkSSlZds5IhEREREREfkzJRLE4Qzu1pgW13mRlZPPvDXHVOIgIiIiIiLiQJRIEIdjNBqYMLwNZpORg8cT+e3QeXuHJCIiIiIiIv+lRII4pOvqu3N7n2YALFofSfLFHDtHJCIiIiIiIqBEgjiwITc0pllDTzJz8liwViUOIiIiIiIijkCJBHFYJqORCcPbYDIa2Bd1gT+OxNk7JBERERERkWueEgni0AL9PBjRqykAC3+JIDVdJQ4iIiIiIiL2pESCOLxhNwbRJMCDjOw8FqyLUImDiIiIiIiIHSmRIA7PbDLy0H9LHPZEJLDzaLy9QxIREREREblmKZEgNUKTAE9u6REEwNfrIkjLzLVzRCIiIiIiItcmJRKkxri1Z1MC/TxIz7LwzboIe4cjIiIiIiJyTVIiQWoMs8nIw7e0wWgwsPNoPLuPqcRBRERERETkalMiQWqUoAaeDLuxCQAL1h4jPcti54hERERERESuLUokSI0zolczrqvvTlqmhYXrVeIgIiIiIiJyNSmRIDWOk7mwxMFggD8Ox7E3MsHeIYmIiIiIiFwzlEiQGqlZQy+G3lBY4jB/7TEyslXiICIiIiIicjUokSA11u19mtHA143U9FwWr4+0dzgiIiIiIiLXBCUSpMZyMpt4aHgbDMC2Q+c5EJ1o75BERERERERqPSUSpEZrGViXQd0aAzBvzVEys/PsHJGIiIiIiEjtpkSC1Hij+jbH36cOyRdz+HajShxERERERESqkxIJUuO5OP2vxGHLgXMcilGJg4iIiIiISHVRIkFqhVaNvRnQJRCAeT8fJStHJQ4iIiIiIiLVQYkEqTXu7NeC+nVdSUzLYWlYtL3DERERERERqZWUSJBaw8XZxIThbQAI2xtL+IkkO0ckIiIiIiJS+yiRILVKmyAfburUCIA5Px8lO1clDiIiIiIiIlVJiQSpde7s34J6Xq5cSM3mu7Dj9g5HRERERESkVlEiQWqdOi5mxg9rDcCGPWc4dirZzhGJiIiIiIjUHkokSK10fTNf+nZoCMCc1UfJseTbOSIREREREZHaQYkEqbXG3BSMj6cL8SlZ/PCrShxERERERESqghIJUmu5uZp5cGhhicMvO08TdSbVzhGJiIiIiIjUfEokSK3WvkU9erVrgBWYvTqcXJU4iIiIiIiIVIoSCVLr3XNzMHU9nDmflMmPW2PsHY6IiIiIiEiNpkSC1Hrurk48OKSwxGHtjlNEn1WJg4iIiIiISEUpkSDXhI7B9bnx+gCs1sJdHCx5BfYOSUREREREpEZSIkGuGWMHtsLL3ZmzFzJYvk0lDiIiIiIiIhWhRIJcMzzqODFucCsAfv7jFCfOp9k5IhERERERkZpHiQS5pnQJ8eeGNv4UWK3MXhVOXr5KHERERERERMrDbO8AyiomJoZPP/2U3bt3k5iYSIMGDRg2bBiPPPII7u7uZWpj3Lhx7Nix44rXNWrUiI0bN9r++7vvvuOVV1655PXBwcGsXLmyTDGI/Y0d1Irwk8mcSchg5W8nuL1Pc3uHJCIiIiIiUmPUiETCgQMHePDBB8nMzKRDhw60a9eOPXv2MHPmTDZu3MjChQvx9PS8Yjs9e/YkICDgkuc3bNhAZmYmoaGhxY4fPnwYgO7du+Pv71/ivoYNG5bzicSevNycuW9QK2b+dJhVv5+kcys/mgRc+fMjIiIiIiIiNSCRYLFYeOaZZ8jMzGTGjBmMGjUKgOzsbJ599lk2btzIe++9x9SpU6/Y1mOPPXbJc0uXLmXFihUEBwczY8aMYueKEglTp06leXN9e10bdGvtz87weHZHJDB7VTivPtgVs0mVPiIiIiIiIlfi8G9Oq1atIjY2ll69etmSCACurq689dZbuLm5sWzZMtLSKr5wXkREBNOnT8fFxYUPPvgANzc327n8/HyOHTuGh4cHzZo1q9SziOMwGAzcPyQEd1czp+LT+fmPk/YOSUREREREpEZw+ETCpk2bABg8eHCJcz4+PnTv3h2LxcLWrVsr3Mcbb7xBTk4OTz75JC1btix2Ljo6mqysLNq2bYvBYKhwH+J46roXljgALN92gjMJ6XaOSERERERExPE5fCIhIiICgJCQkFLPBwcHA3Ds2LEKtb98+XJ27dpFixYtGD9+fInzR44cASAgIIB33nmHoUOH0r59e/r168fUqVOJj4+vUL/iGLq3DaBjy/rkF1iZtSqc/ALt4iAiIiIiInI5Dr9GQlxcHMAlF0n08/MDqNALfX5+Ph999BEATz31FE5OTiWuOXToEAArVqzAw8ODbt260bBhQw4fPsyiRYv45ZdfmDdvXomZDOVhNld9Psf033p/k+r+r+ihW9rw0ue/c/L8RdbtPMNtvZraOySpRTQWRRyDxqKIY9BYFLG/qpho7/CJhKysLKBwTYTSFB3PzMwsd9tr167l9OnTtGrViiFDhpR6TdGMhEGDBjFjxgw8PDwAuHjxIpMnT2bt2rU8/fTTLF++HJPJVO4YjEYDPj5l276yIry86lRb27WFj487j9zejg8W7+WHX49zU7cmNNYuDlLFNBZFHIPGoohj0FgUqdkcPpFgMpkoKMN0c6vVWu6258yZAxTu5nCp9Q9mz57NmTNnaNKkCc7Ozrbjnp6evPXWW+zdu5eoqCi2bt1Kv379yh1DQYGVtLTyJ0GuxGQy4uVVh7S0LPLzNV3/Sjq18KV9i3ociE7kvW9289qDXTEatSaGVJ7Goohj0FgUcQwaiyL2V7duHYzGys0KcvhEgru7OykpKeTk5JR6Pjs7G6DYTgtlcerUKQ4cOEDdunUZOHDgJa9zdXW9ZNmCh4cHN954I8uXL+fgwYMVSiQA5OVV3x+i+fkF1dp+bfLAkBBem7Wd6NhUVv9+kqHdm9g7JKlFNBZFHIPGoohj0FgUsZ8KfAdfgsMXJ/n7+wOQkJBQ6vmitRGKriurNWvWADB06NBiMw3Kq2HDhsD/SjCk5vL1cuXuAYWLd/6w5Tjnk6p+poiIiIiIiEhN5/CJhKLdGiIjI0s9HxUVVey6stq8eTMAw4YNu+Q1CQkJvPrqqzz55JPk5eWVes25c+eA/yUUpGbr074h1zfzxZJXwOzV4RQUVEG6TkREREREpBZx+ERC//79AVi3bl2Jc8nJyWzfvh0XFxd69OhR5jbz8vI4fPgwJpOJjh07XvI6T09PVqxYwbp169i+fXuJ86mpqYSFhWEwGOjTp0+Z+xfHZTAYGD+0NS7OJqLOpLJh9xl7hyQiIiIiIuJQHD6RMHDgQBo1akRYWBiLFy+2Hc/Ozmby5MlkZmYyZswYfH19becsFgvR0dFER0djsVhKtBkVFUVWVhYtW7akTp1Lrxjr6urK6NGjAZg2bRqxsbG2c6mpqTz11FOkpaUxcuRIgoKCquJxxQHUq+vKmJsK18X4bnM08ckqcRARERERESni8Isturq68s477zBx4kRef/11lixZQmBgIHv37iU+Pp7Q0FCeffbZYvfExcUxfPhwADZs2EBgYGCx82fOFH7L7Ofnd8X+//GPf3DkyBH27dvH8OHD6dy5M66uruzcuZOLFy/SpUsXpkyZUkVPK46iX8fr2Bkex9FTKcxZfZQXxnbCWBUbroqIiIiIiNRwDj8jAaBbt24sXbqUIUOGcPbsWcLCwvD09OSJJ55g3rx5uLu7l6u9pKQkALy8vK54rYeHBwsWLODFF1+kWbNm7Nmzhz/++IMmTZrw8ssvV6h/cXxGg4EJw9vg4mTi2OkUwvbGXvkmERERERGRa4DBaq2KzR+kovLzC0hKyqjyds1mIz4+7iQnZ2hrnUrYsPsM3/wSgYuTiWkP34Cf96VLYURKo7Eo4hg0FkUcg8aiiP35+rpjMlVuTkGNmJEgYi83dW5Eq8be5FjymfvzUZR3ExERERGRa50SCSKXUVji0Bpns5Hwk8ls3n/W3iGJiIiIiIjYlRIJIlcQ4OPG6L7NAViyMYrE1Gw7RyQiIiIiImI/SiSIlMHAro1p0ciL7Nx85q1RiYOIiIiIiFy7lEgQKQOj0cBDw9tgNhk5FJPE1oPn7B2SiIiIiIiIXSiRIFJGDeu5M6pvMwAWb4gi+WKOnSMSERERERG5+pRIECmHId2a0KyhF1k5eSpxEBERERGRa5ISCSLlYDQaeOiWNphNBg5EJ/L74fP2DklEREREROSqUiJBpJwa1XdnRK/CEodF6yNJSVeJg4iIiIiIXDuUSBCpgGE3NiGogScZ2XksWHtMJQ4iIiIiInLNUCJBpAJMRiMPD2+DyWhgb+QFtofH2TskERERERGRq0KJBJEKCvT34LaeTQFY+EskqRm59g1IRERERETkKlAiQaQShvcIorG/B+lZFr5Zd8ze4YiIiIiIiFQ7JRJEKsFsMvLQf0scdh1LYNfReHuHJCIiIiIiUq2USBCppKAGngy7MQiABeuOcTFTJQ4iIiIiIlJ7KZEgUgVu69mURn7uXMy0sHB9pL3DERERERERqTZKJIhUASdzYYmD0WBg+5E49kQk2DskERERERGRaqFEgkgVadbQi6HdmwAwf+0x0rMsdo5IRERERESk6imRIFKFRvZuSsN6bqRl5LJIJQ4iIiIiIlILKZEgUoWczCYeGt4GgwF+P3ye/VEX7B2SiIiIiIhIlVIiQaSKtWhUl8HdGgMwb81RMrNV4iAiIiIiIrWHEgki1WBUn+YE+LqRkp7L4o1R9g5HRERERESkyiiRIFINnJ1MPDS8NQZg64FzHDyeaO+QREREREREqoQSCSLVJDjQm5u7BgIw9+ejZOXk2TkiERERERGRylMiQaQa3dG3BX7eriRfzGHJJpU4iIiIiIhIzadEgkg1cnE2MWFYGwA27zvLkRNJdo5IRERERESkcpRIEKlmrYN8GNC5EQBzVqvEQUREREREajYlEkSugjv7t6B+XVcS07JZtjna3uGIiIiIiIhUmBIJIleBq7OZ8cNaA7BpTyxHTybbOSIREREREZGKUSJB5Cpp29SXfh2vA2DOz+Hk5ObbOSIREREREZHyUyJB5Coac1NLfL1cSEjJ5rtfVeIgIiIiIiI1jxIJIldRHRcz44cWljhs2HWGyDMp9g1IRERERESknJRIELnKQpvXo3f7hliB2avCybWoxEFERERERGoOJRJE7OCeAS3x9nAmLjmLH7Yct3c4IiIiIiIiZaZEgogduLk68eB/SxzW7TxNdGyqnSMSEREREREpGyUSROykQ8v69Li+AVYrzF4djiVPJQ4iIiIiIuL4lEgQsaN7BwZT192Zc4mZ/LT1hL3DERERERERuSIlEkTsyKOOEw8MCQFgzfZTxJxLs3NEIiIiIiIil6dEgoiddWrlR/e2ARRYrf8tcSiwd0giIiIiIiKXZLZ3AGUVExPDp59+yu7du0lMTKRBgwYMGzaMRx55BHd39zK1MW7cOHbs2HHF6xo1asTGjRuLHTt48CCfffYZhw4dIi0tjcaNGzNy5EjGjx+Pk5NThZ5JpMjYgcGEn0giNiGDFb+dYHTf5vYOSUREREREpFQ1IpFw4MABHnzwQTIzM+nQoQPt2rVjz549zJw5k40bN7Jw4UI8PT2v2E7Pnj0JCAi45PkNGzaQmZlJaGhoieNPPfUUBQUFdO3aFS8vL3bu3Mm7777Ltm3b+PLLL5VMkErxdHPm/sEhfPbjIVb/fpIurfwIanDlz7SIiIiIiMjVZrBarVZ7B3E5FouFIUOGEBsby4wZMxg1ahQA2dnZPPvss2zcuJF7772XqVOnVqqfpUuX8uqrrxIcHMySJUtwc3MDICUlhQEDBpCbm8sXX3xBz549bccfeeQR9u/fz/PPP8+kSZMq1G9+fgFJSRmVir00ZrMRHx93kpMzyNNU+Rrjsx8OsutYAo39PXjtwa6YTao+quk0FkUcg8aiiGPQWBSxP19fd0yVfM9w+LeUVatWERsbS69evWxJBABXV1feeust3NzcWLZsGWlpFV+kLiIigunTp+Pi4sIHH3xgSyIAfP3112RkZDBq1ChbEgHA29ubt99+G4B58+ZRUKA/CKXy7h8cgkcdJ07Hp7P695P2DkdERERERKQEh08kbNq0CYDBgweXOOfj40P37t2xWCxs3bq1wn288cYb5OTk8OSTT9KyZcti58LCwi7Zf4sWLWjVqhUJCQkcPHiwwv2LFPFyd+a+Qa0AWPHbCU7Hp9s5IhERERERkeIcPpEQEREBQEhISKnng4ODATh27FiF2l++fDm7du2iRYsWjB8/vsT5yMjIau1f5K9uaONPp+D65BdYmb0qnLx8zXYRERERERHH4fCJhLi4OIBLLpLo5+cHQHx8fLnbzs/P56OPPgLgqaeeKrFgYkpKCtnZ2RiNRvz9/au8f5HSGAwGHhgSgrurmZNxF1mz/ZS9QxIREREREbFx+F0bsrKygMI1EUpTdDwzM7Pcba9du5bTp0/TqlUrhgwZUu6+K9t/EbO56vM5RYtnVHYRDbGPet51uH9wCJ8vP8zybTF0beNPoJ+HvcOSCtBYFHEMGosijkFjUcT+DIbKt+HwiQSTyVSmhQwrsvnEnDlzAHjssccwlPLTNBrL/gdcRTe/MBoN+Pi4V+jesvDyqlNtbUv1uqVvC3ZHXmBXeBxzfz7Kv57oo//TrcE0FkUcg8aiiGPQWBSp2Rw+keDu7k5KSgo5OTmlns/OzgYottNCWZw6dYoDBw5Qt25dBg4ceMm+gUv2XZn+ixQUWElLq/hshksxmYx4edUhLS2LfNXY11j3DwrmyPFEIk6lsGhtOLf0aGrvkKScNBZFHIPGoohj0FgUsb+6deuU60vz0jh8IsHf35+UlBQSEhJo2LBhifNFaxNcag2DS1mzZg0AQ4cOxdnZudRrPDw88PDwID09ncTEROrVq1dl/f9Zde6hm59foD16azAvN2fuvrklc1Yf5buw47RvXo+G9apvBotUH41FEcegsSjiGDQWReyngpPpi3H4edJFuyUU7Z7wV1FRUcWuK6vNmzcDMGzYsMte16pVq2rpX6SserdrSGgzX/LyC5i9OpyCgioY+SIiIiIiIhXk8ImE/v37A7Bu3boS55KTk9m+fTsuLi706NGjzG3m5eVx+PBhTCYTHTt2rHD/0dHRREREUL9+fUJDQ8vcv0h5GAwGxg9rjauziejYNNbvOm3vkERERERE5Brm8ImEgQMH0qhRI8LCwli8eLHteHZ2NpMnTyYzM5MxY8bg6+trO2exWIiOjiY6OhqLxVKizaioKLKysmjZsiV16lx+oZfRo0fj4eHBkiVL2LRpk+14SkoKr7zyCgATJ07EbHb4KhGpwXy9XBkzoCUA3/96nLjkql9XQ0REREREpCwcPpHg6urKO++8g6urK6+//jqjR4/mqaeeYtCgQWzYsIHQ0FCeffbZYvfExcUxfPhwhg8fTlxcXIk2z5w5A4Cfn98V+/fz82PatGnk5+fz2GOPMXbsWJ544gmGDBnCvn37uOmmmxg3blzVPKzIZfTrcB1tgnzIzStgzuqjFFRFcZOIiIiIiEg5OXwiAaBbt24sXbqUIUOGcPbsWcLCwvD09OSJJ55g3rx5tt0VyiopKQkALy+vMl1/yy23sGDBAvr06UNkZCTbtm0jICCAl19+mY8++kizEeSqMBgMTBjWGhcnExGnU9i0J9beIYmIiIiIyDXIYLXqa017ys8vICkpo8rbNZuN+Pi4k5ycoRVxa5mNe87w9boIXJxMvPHwDfh7ax9mR6axKOIYNBZFHIPGooj9+fq6YzJVbk5BjZiRICL/079TI1o38SbHks/c1eEqcRARERERkatKiQSRGsb4310cnJ2MHD2VwuZ9Z+0dkoiIiIiIXEOUSBCpgfx93LijbwsAlmyK4kJqlp0jEhERERGRa4USCSI11M1dAwkOrEtObj7zfj6KljsREREREZGrQYkEkRrKaDDw0PA2OJmNHD6RzJYD5+wdkoiIiIiIXAOUSBCpwQJ83RjVpzkA326MJCkt284RiYiIiIhIbVdliYS4uDgiIyOLHZs7dy6jR49m5MiRvP/++2RmZlZVdyLyX4O7NabFdV5k5eQzb80xlTiIiIiIiEi1qpJEwkcffcTNN9/M7NmzbcdmzpzJO++8w5EjRzh27BhffPEFDz30EPn5+VXRpYj8l9FoYMLwNphNRg4eT+S3Q+ftHZKIiIiIiNRilU4khIWF8dlnn5GXl0d2duG06tzcXL766isAbrrpJv75z3/SoEED9u/fz5IlSyrbpYj8xXX13RnZuykAi9ZHknwxx74BiYiIiIhIrVXpRMKyZcswGAw899xzvP/++wD8/vvvpKenU69ePT755BMmTJjAF198AcDq1asr26WIlGJo9yY0beBJZk4eC9aqxEFERERERKpHpRMJ+/fvx9fXl0mTJtmObdmyBYB+/fphMpkACA4OpkmTJkRERFS2SxEphclo5KFb2mAyGtgXdYHtR+LsHZKIiIiIiNRClU4kJCcnc91112EwGGzHfvvtNwwGA927dy92rYeHBxkZGZXtUkQuIdDPgxG9mgLwzS8RpKarxEFERERERKpWpRMJrq6upKWl2f77/PnzHD9+HKBEIuHcuXN4enpWtksRuYxhNwbRJMCDjOw8vl4XoRIHERERERGpUpVOJAQHB3Pq1CmioqIAWL58OQCtWrUiICDAdt1PP/1EUlISISEhle1SRC7DbDLy0PDCEofdEQnsPBpv75BERERERKQWMVe2gdtuu429e/fy4IMP0qlTJ8LCwjAYDIwaNQoonKHw1VdfsXjxYgwGA7fffntluxSRK2gS4MktPYJYvu0EX6+LoHWQD15uzvYOS0REREREaoFKz0i45557GDx4MImJiaxfv568vDy6devG/fffD0BcXBxff/01eXl53HXXXUokiFwlt/ZsSqCfO+lZFhb+okVORURERESkalR6RoLRaOSjjz5iy5YtHD16lKZNmzJgwADbbg3NmjVj4MCBjBw5kkGDBlU6YBEpG7PJyMO3tGX6vF3sCI+nW+t4uoT42zssERERERGp4QxWrcRmV/n5BSQlVf1OFmazER8fd5KTM8jLK6jy9qXm+G5zNKt+P4mXmxP/N+lGPOo42Tuka4rGoohj0FgUcQwaiyL25+vrjslUueKESpc2XE52djYbN25k/fr1pKSkVGdXInIJI3o147r67qRlWli4XiUOIiIiIiJSOVWSSIiLi2Pq1Kl88cUXtmPR0dEMHjyYv//97zz55JMMGDCA1atXV0V3IlIOTubCXRwMBvjjcBz7Ii/YOyQREREREanBKp1ISEpKYsyYMXz77bfs3bvXdnzKlCnExxduO+fu7k5mZiYvvvgi0dHRle1SRMqp+XVeDL2hCQDz1h4lI9ti54hERERERKSmqnQiYd68ecTFxdGkSRPuvvtuAE6ePMnu3bsxmUwsWrSIXbt28cgjj5CXl8fcuXMr26WIVMDtfZrRwNeN1PRcFm+ItHc4IiIiIiJSQ1U6kfDrr79iNpuZNWsW/fv3ByAsLAyAzp0707FjRwCefPJJvLy8+OOPPyrbpYhUgJPZVFjiAGw7eJ4D0Yn2DklERERERGqgSicSTp8+TdOmTQkMDLQd++233zAYDPTs2dN2zMnJicDAQFu5g4hcfS0D6zKoW2MA5q05SmZ2np0jEhERERGRmqbSiYTs7GycnZ1t/52Xl8fOnTsBuOGGG4pdm5WVhcFgqGyXIlIJo/o2x9+nDskXc1iySSUOIiIiIiJSPpVOJPj7+xMbG4vFUrh4286dO8nMzMTd3d1W1gCFOzucPn2ahg0bVrZLEakEFycTE4a1BuDX/ec4HJNk54hERERERKQmqXQioXv37qSlpfHuu+9y9OhRPvjgAwwGA/369cNkMgGQmJjICy+8QH5+Pj169Kh00CJSOSFNfLi5S2E50tyfw8nKUYmDiIiIiIiUTaUTCZMmTcLV1ZX58+czatQo9u/fj8lkYtKkSQDs2rWLfv36sXPnTjw9PXnooYcqHbSIVN6d/VpQv64riWk5LAvTtqwiIiIiIlI2lU4kNG/enNmzZ9OuXTucnZ1p1aoV//nPf2jdunDqtL+/P3l5eQQHB7No0aJiizKKiP24OJuYMLwNAJv2xhJ+QiUOIiIiIiJyZQar1Wqtzg4KCgqIiIiwJRakuPz8ApKSMqq8XbPZiI+PO8nJGeTlFVR5+1J7zF97jLC9sdSv68q0h2/A1dls75BqFY1FEcegsSjiGDQWRezP19cdk6lycwoqPSPhih0YjUoiiDiwu/q3oJ6XCxdSs/lu83F7hyMiIiIiIg6uyr56TE9P5+uvv2b9+vXExMSQmZmJm5sbQUFB9OvXjwcffBBvb++q6k5EqkgdFzPjh7XhvW/3sWH3Gbq19qdVY297hyUiIiIiIg6qSmYkREREMGLECD788EMOHTpERkYGVquVjIwMjhw5wsyZMxk1ahRHjx6tiu5EpIpd38yXvh0Kt2advTqcHEu+nSMSERERERFHVekZCRcvXuRvf/sb586do379+txxxx2Ehobi4eFBamoqhw4d4scff+TcuXP8/e9/56effsLDw6MqYheRKjTmpmAOHk8iPjmLH349zj03B9s7JBERERERcUCVnpEwb948zp07R6dOnVi9ejXPPvssgwYNokePHgwdOpTnn3+e1atX07FjR86ePcvixYurIm4RqWJurmYeHFq4nskvO08TdSbVzhGJiIiIiIgjqnQiYf369ZhMJv7973/j5eVV6jVeXl78+9//xmAwsGbNmsp2KSLVpH2LevQKbYCVwhKHXJU4iIiIiIjIX1Q6kXDy5EmaN29OYGDgZa9r3LgxLVq04NSpU5XtUkSq0T0Dg6nr4cz5pEx+2hpj73BERERERMTBVDqRYLVacXJyKtO1ZrMZi8VS2S5FpBq5uzrx4JDCEoc1O05x/GyanSMSERERERFHUulEQqNGjYiMjCQpKemy1yUlJREZGUnDhg0r26WIVLOOwfW58foArNbCEgdLXoG9QxIREREREQdR6URC3759sVgsTJkyhby8vFKvycvL49VXXyU/P59+/fpVtksRuQrGDmyFl7szZy9ksHybShxERERERKSQwWq1WivTQFxcHLfeeivp6em0atWKe++9l+uvvx5PT08uXrzI4cOHWbhwIZGRkXh4eLBy5UoCAgLK3U9MTAyffvopu3fvJjExkQYNGjBs2DAeeeQR3N3dy9VWRkYGc+bMYc2aNZw+fRqj0Ujbtm158MEHGTx4cInrv/vuO1555ZVLthccHMzKlSvL/UwA+fkFJCVlVOjeyzGbjfj4uJOcnEGevk2WCtp9LJ5PfziE0WDg1Qe70LRB6QuqyqVpLIo4Bo1FEcegsShif76+7phMlZtTYK5sEAEBAXz00Uf8/e9/59ixY7zxxhslrrFarbi7u/PBBx9UKIlw4MABHnzwQTIzM+nQoQPt2rVjz549zJw5k40bN7Jw4UI8PT3L1FZ8fDzjx48nOjqa+vXr07t3bxITE9m1axe7du3i1VdfZdy4ccXuOXz4MADdu3fH39+/RJsq15DaqkuIP91a+7PzaDyzV4UzZXw3zJX8Q0dERERERGq2Ss9IKHL27FlmzpzJ5s2biYuLsx338/PjpptuYtKkSTRu3Ljc7VosFoYMGUJsbCwzZsxg1KhRAGRnZ/Pss8+yceNG7r33XqZOnVqm9h555BE2b97MsGHDeOedd3BxcQFg69atPProo1itVjZs2ECDBg1s99x9993s27ePn3/+mebNm5f7GS5HMxLE0aVl5vLql9tJz7IwoldTbu9TtWOgttNYFHEMGosijkFjUcT+qmJGQpUlEv4sIyOD9PR03N3d8fDwsB1PT08HKHbsSn788Uf++c9/0qtXL2bPnl3sXHJyMgMGDMBisfDbb7/h5XX5adcHDhzgrrvuIigoiJUrV+Ls7Fzs/GuvvcbWrVt56aWXGDJkCAD5+fl06dIFk8nErl27MBgMZY69LJRIkJpgR3gcM386jMlo4LUHu9IkoGwzgERjUcRRaCyKOAaNRRH7q4pEQrXMUXZ3dycgIKBYwiA5OZmuXbtyww03lKutTZs2AZS6doGPjw/du3fHYrGwdevWK7b1888/A/Dggw+WSCIATJ8+nU2bNtmSCADR0dFkZWXRtm3bKk8iiNQU3Vr706WVH/kFVmavDicvX//HLyIiIiJyrbrqxc7lnQAREREBQEhISKnng4ODATh27NgV2zp06BAAHTt2JDMzkx9++IFp06bx+uuvs2zZMnJyckrcc+TIEaBwLYh33nmHoUOH0r59e/r168fUqVOJj48v1/OI1EQGg4H7h4Tg7mrmVFw6P/9x0t4hiYiIiIiInTj8qmlF6y1capFGPz8/gDK90J84cQKAxMREbr31Vl566SW++eYbFi9ezOTJk7nllluIjo4udk9R8mHFihUsWbKEpk2b0qVLF7Kysli0aBGjRo0iKiqqoo8nUmPUdXdm7KBWACzfdoIzCel2jkhEREREROyh0rs2VLesrCwAXF1dSz1fdDwzM/OKbRWt0fCPf/yDwMBA3nnnHdq0acOZM2d499132bJlC5MmTWL58uW2soyiGQmDBg1ixowZtuMXL15k8uTJrF27lqeffprly5djMpkq9Ixmc9Xnc4pqXipb+yLyZ73bN2TX0Xj2Rl5gzuqjTJnQFZNRn7HL0VgUcQwaiyKOQWNRxP6qomLf4RMJJpOJgoIr12OXpWSiqHTB1dWV+fPn27aMbN26NTNnzmTUqFFERESwbNkyxo8fD8Ds2bM5c+YMTZo0KbaugqenJ2+99RZ79+4lKiqKrVu30q9fv3I/n9FowMfHvdz3lZWXV51qa1uuTU/f25m//3sTMefSCNt/njsHBNs7pBpBY1HEMWgsijgGjUWRms3hEwnu7u6kpKSUun4BFG4DCeDm5nbFturUqUN6ejqjR4+2JRGKmM1m7rnnHqZNm8bvv/9uSyS4urrSsmXLUtvz8PDgxhtvZPny5Rw8eLBCiYSCAitpaVeeTVFeJpMRL686pKVlka+F8aQKGYGxA4P5csURFq45SuvGdWlUv/qSYTWdxqKIY9BYFHEMGosi9le3bh2MlZxV7PCJBH9/f1JSUkhISKBhw4YlzhetjeDv73/FturVq0d6ejqBgYGlni86npSUVOb4imIqKsGoiOrc+iY/v0Bb60iVu7FtAH8cjuPg8US+Wn6Yl+/vgtGoXU0uR2NRxDFoLIo4Bo1FEfsp5/4HpXL44qSi3RoiIyNLPV+00OGldnUora2iBRz/KiEhAShMOBT996uvvsqTTz5JXl5eqfecO3cOoNQkh0htZTAYeHBoCHVcTESfTWPdztP2DklERERERK6Scs1I2LlzZ4U7unjxYoXu69+/PytWrGDdunXccccdxc4lJyezfft2XFxc6NGjR5naWrduHatWreLRRx/FbC7++L/++isAN9xwA1C4DsKKFSvIzs5m+/bt9OrVq9j1qamphIWFYTAY6NOnT4WeT6Sm8vVy5e4Bwcz9+Sg/bDlOx+D6NPC9comRiIiIiIjUbOVKJIwbNw5DVSzxWA4DBw6kUaNGhIWFsXjxYu655x6gcG2EyZMnk5mZybhx4/D19bXdY7FYOHXqFABNmjTByckJgOHDh/PZZ59x/Phxpk+fzmuvvWZLJixdupS1a9fi7e3N7bffDhSujzB69GgWLlzItGnTmD17No0aNQIKkwhPPfUUaWlp3H777QQFBV2tH4mIw+jTviE7w+M4fCKZOavD+ed9nTFe5T8jRERERETk6jJYy7LdwX+1bt268h0aDISHh5frnp07dzJx4kSys7O5/vrrCQwMZO/evcTHxxMaGsr8+fNxd//fYm9nzpzh5ptvBmDDhg3F1kQ4dOgQEydOJDk5mYCAANq3b8/JkyeJiIjA1dWVDz/8kP79+9uuT09P5+GHH2bfvn24urrSuXNnXF1d2blzJxcvXqRLly58+eWXxfovj/z8ApKSMip07+WYzUZ8fNxJTs5Q/ZlUq8TUbF6dtZ2c3HzuHRjMoK6N7R2SQ9FYFHEMGosijkFjUcT+fH3dK70Fa7kSCbGxsZXqrEjRt/rlERERwSeffMKOHTvIzMwkMDCQYcOGMWHCBDw8PIpde7lEAhSuffD5558TFhbG+fPn8fb2pnv37jzyyCOlrrWQm5vLggULWLFiBTExMRiNRpo1a8aIESO47777bDMeKkKJBKkNNu2NZcHaYzg7GZn20A34+6jEoYjGoohj0FgUcQwaiyL2d9UTCVL1lEiQ2qDAauXdRXs5eiqFkMbevDC2k0oc/ktjUcQxaCyKOAaNRRH7q4pEgsPv2iAijs9oMDB+eBucnYwcO51C2N6qmb0kIiIiIiKOR4kEEakS/t51uLNfCwCWbormQkqWnSMSEREREZHqoESCiFSZAV0CaRVYlxxLPnPXHEWVUyIiIiIitY8SCSJSZYwGAxNuaYOz2ciRE8n8uv+svUMSEREREZEqpkSCiFSpAB83RvdtDsC3G6NITM22c0QiIiIiIlKVlEgQkSo3sGtjWjTyIjs3n3kqcRARERERqVWUSBCRKmc0GnhoeBvMJiOHYpLYevCcvUMSEREREZEqokSCiFSLhvXcGdWnGQCLN0SRfDHHzhGJiIiIiEhVUCJBRKrN4Bsa06yhF1k5ecxXiYOIiIiISK2gRIKIVBuT0chDt7TBbDKwPzqRPw7H2TskERERERGpJCUSRKRaNarvzohehSUOC9dHkJKuEgcRERERkZpMiQQRqXZDuzchKMCTjOw8Fqw9phIHEREREZEaTIkEEal2ZlNhiYPJaGBv5AV2hMfbOyQREREREakgJRJE5Kpo7O/BbT2bAvDNLxGkZeTaNyAREREREakQJRJE5KoZ3iOIxv4epGdZ+PqXCHuHIyIiIiIiFaBEgohcNWaTkYeGF5Y47Doaz66jKnEQEREREalplEgQkasqqIEnw24MAmDBumNczFSJg4iIiIhITaJEgohcdbf1bEqj+u5czLSwcH2kvcMREREREZFyUCJBRK46J3PhLg4GA2w/EsfeiAR7hyQiIiIiImWkRIKI2EWzhl4M615Y4jB/7THSsyx2jkhERERERMpCiQQRsZuRvZvSsJ4bqRm5LN6gEgcRERERkZpAiQQRsRsns4mHhheWOPx26Dz7oy7YOyQREREREbkCJRJExK5aNKrL4G6NAZi35iiZ2SpxEBERERFxZEokiIjdjerTnACfOqSk57J4Y5S9wxERERERkctQIkFE7M7ZycSE4W0wAFsPnOPQ8UR7hyQiIiIiIpegRIKIOIRWjb25uWsgAHPXHCUrJ8/OEYmIiIiISGmUSBARh3FH3xb4ebuSlJbD0k0qcRARERERcURKJIiIw3BxNjFhWBsAwvad5ciJJDtHJCIiIiIif6VEgog4lNZBPtzUuREAc38+SnauShxERERERByJEgki4nDu6t+Cel6uXEjNZllYtL3DERERERGRP1EiQUQcjquzmQnDWwOwcU8sx04l2zkiEREREREpokSCiDiktk196dfxOgDmrD5KjiXfzhGJiIiIiAgokSAiDmzMTS3x9XIhPiWL7zcft3c4IiIiIiKCEgki4sDquJgZP7SwxGH9rtNEnkmxb0AiIiIiIqJEgog4ttDm9ejdriFWYPbqo+SqxEFERERExK6USBARh3fPzS3x9nAmLimTH7fE2DscEREREZFrmhIJIuLw3FydePC/JQ5rd54i+myqnSMSEREREbl2KZEgIjVCh5b16XF9A6xWmL0qHEueShxEREREROxBiQQRqTHuHRhMXXdnziVm8tPWE/YOR0RERETkmqREgojUGB51nBg3JASANdtPEXMuzc4RiYiIiIhce2pMIiEmJobnn3+em266ifbt2zN48GDef/99MjIyyt1WRkYGn3zyCbfeeisdOnSgU6dO3Hfffaxbt+6S9xw8eJDHHnuMPn360KFDB2699Va+/PJLLBZLZR5LRMqpcys/bmjjT4HVyuzV4VjyCuwdkoiIiIjINaVGJBIOHDjA6NGjWbFiBX5+fvTv35/MzExmzpzJPffcw8WLF8vcVnx8PHfddRcff/wxycnJ9O7dm5CQEHbt2sWTTz7JggULStyzYcMG7rnnHsLCwmjatCm9e/cmPj6ed999l0mTJimZIHKV3TeoFZ5uTsQmZLDytxP2DkdERERE5Jri8IkEi8XCM888Q2ZmJjNmzGDJkiV89NFHrF+/ngEDBhAREcF7771X5vZeffVVoqOjGTZsGBs3buTTTz9l8eLFzJo1CycnJ2bMmMH58+dt16ekpPDCCy9gMBiYNWsWCxYs4NNPP2XdunV06NCB33//nblz51bDk4vIpXi6OTNucGGJw+o/TnIqruzJRBERERERqRyHTySsWrWK2NhYevXqxahRo2zHXV1deeutt3Bzc2PZsmWkpV25VvrAgQNs3ryZoKAg/vWvf+Hi4mI717t3b0aNGoW/vz/79++3Hf/666/JyMhg1KhR9OzZ03bc29ubt99+G4B58+ZRUKDp1SJXU9fW/nQN8SO/wMqsVeHk5WsMioiIiIhcDQ6fSNi0aRMAgwcPLnHOx8eH7t27Y7FY2Lp16xXb+vnnnwF48MEHcXZ2LnF++vTpbNq0iSFDhtiOhYWFXbL/Fi1a0KpVKxISEjh48GCZnkdEqs79g0PwqOPE6fh0Vv9+0t7hiIiIiIhcExw+kRAREQFASEhIqeeDg4MBOHbs2BXbOnToEAAdO3YkMzOTH374gWnTpvH666+zbNkycnJyStwTGRlZZf2LSNXycndm7KDCMbjitxOciU+3c0QiIiIiIrWf2d4BXElcXBwAAQEBpZ738/MDChdRvJITJ04AkJiYyJNPPklsbKzt3OLFi5k5cyaff/45LVq0AArXR8jOzsZoNOLv71/p/i/FbK76fI7JZCz2T5Haqle7huw6msCeiARm/xzO6xO6YTI6zudeY1HEMWgsijgGjUUR+zMYKt+GwycSsrKygMI1EUpTdDwzM/OKbaWnF35b+Y9//IPAwEDeeecd2rRpw5kzZ3j33XfZsmULkyZNYvny5Xh4eFyx7/L2Xxqj0YCPj3uF7i0LL6861da2iKN4+t7O/P1fGzlx7iKb9p3jrptb2TukEjQWRRyDxqKIY9BYFKnZHD6RYDKZyrSQodVqveI1RaULrq6uzJ8/H09PTwBat27NzJkzGTVqFBERESxbtozx48djLMe3mmXpvzQFBVbS0iqWhLgck8mIl1cd0tKyyNcidFLLGSjcEvLz5YdZuPYobRrXpZGfh73DAjQWRRyFxqKIY9BYFLG/unXrlOtdtzQOn0hwd3cnJSWl1PULALKzswFwc3O7Ylt16tQhPT2d0aNH25IIRcxmM/fccw/Tpk3j999/Z/z48bi7F84UuFTf5e3/UvLyqu8P0fz8gmptX8RR3NDGn98Pn+dAdCJfLD/CK+M6O1SJg8aiiGPQWBRxDBqLIvZTwe/Ai3Gcv2VfQtHaBAkJCaWeL1qb4FJrGPxZvXr1AAgMDCz1fNHxpKQkADw8PPDw8CA/P5/ExMRK9y8i1cdgMPDg0NbUcTETcy6NdTtP2zskEREREZFayeETCUW7JRTtnvBXUVFRxa4rS1tFCzj+VVGyoijhANCqVasq619EqpePpwv3DGgJwA+/xnAuMcPOEYmIiIiI1D4On0jo378/AOvWrStxLjk5me3bt+Pi4kKPHj3K3NaqVavIy8srcf7XX38F4IYbbihT/9HR0URERFC/fn1CQ0Ov2L+IVL/e7RsS2syXvPwC5qw+SkFBFczdEhERERERG4dPJAwcOJBGjRoRFhbG4sWLbcezs7OZPHkymZmZjBkzBl9fX9s5i8VCdHQ00dHRWCwW2/Hhw4cTGBjI8ePHmT59erFkwtKlS1m7di3e3t7cfvvttuOjR4/Gw8ODJUuWsGnTJtvxlJQUXnnlFQAmTpyI2ezwy02IXBMMBgPjh7XG1dlEVGwq63efsXdIIiIiIiK1isFa0e0GrqKdO3cyceJEsrOzuf766wkMDGTv3r3Ex8cTGhrK/PnzbQsjApw5c4abb74ZgA0bNhRbE+HQoUNMnDiR5ORkAgICaN++PSdPniQiIgJXV1c+/PBD2yyEIqtWreL555/HarXSuXNnfH192blzJykpKdx000188sknFU4k5OcXkJRU9dOvzWYjPj7uJCdnaCEbuSaF7Ytl/ppjOJuNvPHwDQT4VHxB1MrQWBRxDBqLIo5BY1HE/nx93TGZKjenwOFnJAB069aNpUuXMmTIEM6ePUtYWBienp488cQTzJs3r1gS4UpCQ0NZsWIF48aNw9nZmbCwMJKTk7n11ltZsmRJiSQCwC233MKCBQvo06cPkZGRbNu2jYCAAF5++WU++ugjzUYQcUD9OlxHmyAfcvP+W+Lg+DlTEREREZEaoUbMSKjNNCNBpPpcSMnitVk7yLHkc9+gVtzcpfQdW6qTxqKIY9BYFHEMGosi9nfNzEgQEamI+t51uLN/CwCWhUWTkJJl54hERERERGo+JRJEpFa7qXMjQhp7k2PJZ+7PR9EkLBERERGRylEiQURqNaPBwIThrXF2MhJ+MpnN+87aOyQRERERkRpNiQQRqfX8fdy4o29hicO3m6K4kKoSBxERERGRilIiQUSuCTd3DaRlYF1ycvOZpxIHEREREZEKUyJBRK4JRoOBh4a3wcls5PCJZLYcOGfvkEREREREaiQlEkTkmtHA141RfZoD8O3GSJLSsu0ckYiIiIhIzaNEgohcUwZ3a0yL67zIysln/tpjKnEQERERESknJRJE5JpiNBqYMLwNZpORA9GJ/HbovL1DEhERERGpUZRIEJFrznX13RnZuykAi9ZHknwxx74BiYiIiIjUIEokiMg1aWj3JjRt4ElmTh4LVOIgIiIiIlJmSiSIyDXJZDTy0C1tMBkN7Iu6wPYjcfYOSURERESkRlAiQUSuWYF+Hozo1RSAb36JIDUj174BiYiIiIjUAEokiMg1bdiNQTQJ8CAjO4+v1x2zdzgiIiIiIg5PiQQRuaaZTUYeGl5Y4rD7WAI7j8bbOyQREREREYemREItVGAt4FhSFFtP7uRYUhQF1gJ7hyTi0JoEeHJLjyAAFqw9RlqmShxERERERC7FbO8ApGrtiz/I0sjlpOSk2o55u9TlruARdPRvZ8fIRBzbrT2bsicigTMJGSz8JYJHR4baOyQREREREYekGQm1yL74g3x5aEGxJAJASk4qXx5awL74g3aKTMTxmU2FuzgYDQZ2hMez+1iCvUMSEREREXFISiTUEgXWApZGLr/sNcsil6vMQeQymjbwYtiNTQBYsO4Y6VkWO0ckIiIiIuJ4lEioJaJSYkrMRPir5JxU5h/5lu3ndhOTeopMS+ZVik6k5hjRqxnX1XcnLSOXResj7B2OiIiIiIjD0RoJtURaTlqZrtsZt5edcXtt/+3h5I6/W3383fwIqONn+3e/OvVwMjlVV7giDsvJXLiLw5sLdvH74Ti6tQ6gY3B9e4clIiIiIuIwlEioJbxcvMp0XWi9NuTk5xCfeYHU3DTSLRmkp2ZwPPVksesMGPB19cbf7b/JhT8lGXxdvTEaNJlFaq/m13kx5IYmrNl+inlrjxLcuDvurkqsiYiIiIiAEgm1RkvvZni71L1seYOPS13+1v5BWxIgOy+HhKwLxGcmEJeZQHzmBeIzLxCXmUB2fjaJ2ckkZicTnlR8erfZaMavTr3CJEOd+rZkQ4CbHx5O7hgMhmp9VpGr4fbezdgbeYG4pEwWb4jk4Vva2jskERERERGHoERCLWE0GLkreARfHlpwyWvuDB5RbCaBq9mFxp6NaOzZqNh1VquVdEvGf5MLRQmGBOKyLnAh8wJ5BXmcy4jjXEZciT7qmOvYZjAEuBUlGQoTDS4m56p7YJFq5uxk4uHhbXj7691sO3iebq0DaN+inr3DEhERERGxO4PVarXaO4hrWX5+AUlJGVXW3r74gyyNXF5sZoKPS13uDB5BR/92lW6/wFpAUnZKiSRDfNYFkrNTsHLpj5O3S93CGQzufgT8aSZDPVdfTEZTpWMTqQ6LN0SybudpfDxdmP5wd9xcy5d/NZuN+Pi4k5ycQV6edk0RsReNRRHHoLEoYn++vu6YTJUrVVciwc6qOpEAhS/7MRdPkGfOxZznTDPPpldlTYPcfMt/SyUu2JIMcZkJxGclkHGZHSKMBiP16/gS4OZXbC0Gf7f61HX2UqmE2FWOJZ/XZ+8gPjmLvh2uY/yw1uW6X39hEnEMGosijkFjUcT+lEioBaojkQCO94d0uiWDhMz/JRni/juLIT7zApYCyyXvczE5l7oWg79bfeqY61zFJ5Br2bFTybyzsHC3k3/c3ZHrm/mW+V5HG4si1yqNRRHHoLEoYn9VkUjQGglyVXg4ueNR151mdYOKHS+wFpCak1asVCIuq/CfiVlJ5OTncvpiLKcvxpZo09PZo8RaDAFu9alXpx5ORn20peqENPHh5s6BbNhzhv/f3p2HR13e+/9/zZ59zyRA2AlJMIAIQdRabKF61HPaY90QD1+1etCqx9rNSu3x59GqpW7naBU3bF1QW6lUrVqtEq0UJGFTloQ9QFgy2bfJZCYz8/sjZJKQAAMkmWHyfFyXF+Sz3HNP2jefySv38ocPS3T/jWcr2sb/xwAAADA48UkYIWU0GJUclaTkqCTlpmR3O9fma1NVS0339RgOhwwN7kY1upvU6G7Szvrd3e4zyKDUqOQjRjC0/z3JlsjWlTgpl18wRl/trFJVvUtLP9upeRflhLpLAAAAQEgQJCBsmY1mZcbalRlr73Gupc3VY7HHjikTrV63qlw1qnLVaEvN1m73WYxmpUd3Dxc6/oyzxA7UW8NpKMpq1g2X5OmRN9arcP1+Tcu1K29kcqi7BQAAAAw4ggSclqLNURqZMFwjE4Z3O+73+9XgbjximkT73ytbquXxtelA8yEdaD7Uo81Yc0yPcCEjJl3p0WmymiwD9dYQxvJGJuuCKcP02fr97VMcfnC2bFZ2HAEAAMDgQpCAiGIwGJRoS1CiLUHZyWO7nfP6vKp21QZGMFR0GdFQ11qv5jandjfs0e6GPT3aTbYlBRZ57BoypEQlM1VikLnygrHauLNKlXUu/fnznZr7nfGh7hIAAAAwoAgSMGiYjKbDQUBaj3OtXrcqnV3ChZbO7Stb2lpU21qn2tY6ldZu73af2WBSWnRqr+sxxFvi2LoyAkXbzLru4lw9/sev9Mnack3LtWv88KRQdwsAAAAYMAQJgNq3mcyKH6qs+KHdjvv9fjV7nJ0LPh5ei6E9bKhSm69Nh5wOHXI6erQZZYoKBBfd1mSITlOUOWqg3hr6Qf7oVJ0/aYi++PqgXvqgRP/zg+myWZjiAAAAgMGBIAE4BoPBoDhrrOKssRqbNKrbOZ/fp1pXXbctKx2HA4caV51cXpf2NpZrb2N5j3YTrfGBLSsDQUN0mtKiU2Uy8gPp6eDqb2dr0+4aOWpbtOwfuzRnVvbxbwIAAAAiAEECcJKMBqNSo1OUGp2iPHWfJ+/xelTZUt1tN4mOoKHJ06x6d6Pq3Y3aXrerR5tpUSnd1mKwR6crIzZdidYEpkqEkZgos677l1z971tf6e/F+zQt165xwxJD3S0AAACg3xEkAP3AYrJoaFymhsZl9jjn9DgPBwxVnVMmDocMbp+n/VxLlVRd2u0+q9HSbVeJjC5BQ4wleqDeGrqYNDZV5+Vn6p+bDun3H5TovhsKZDEzogQAAACRjSABGGAxlhiNsozQqIQR3Y77/X7VuxtU0VwZWOyxI2SoctXI7fOovOmAypsO9GgzzhLbc8HH6DSlR6fKwtaV/WrO7GxtKqvRwWqn/rJit668YFyouwQAAAD0K4IEIEwYDAYl2RKVZEtUjrr/MOr1eVV1eKpE12kSDmeV6t0NavI0q6m+Wbvqy7q3KYNSopK6r8cQ3f5nclQSW1f2gdgoi/7fRTl66s8b9bfVezV1vF1jhiaEulsAAABAvzltgoTdu3fr6aef1tq1a1VdXa3MzExdfPHFmj9/vmJjY4NuZ9++fZo9e/Yxr1m1apVSUlICXz/55JN6+umnj3r9BRdcoOeeey7oPgAnymQ0KSPWroxYuyYecc7V5gpMlegIFzrCBpfXpWpXrapdtSqp2dbtPrPRLHt0Wud6DNGdUyZiLTGsx3ACpmSna8aEDH25pUIvfVCi/+/6AlnMhDQAAACITKdFkPD111/ruuuuk9Pp1OTJkzVx4kStW7dOzz77rJYvX67XX39d8fHxQbW1efNmSdK4ceOUl5fX6zU2m63Xe771rW8pLi6ux/UTJkw4kbcD9Kkoc5RGxGdpRHxWt+N+v1+NnqZAwNB1JENlS7XafG060HxIB5oP9WgzxhzdY7FHe3Sa0mPSZDNZB+qtnVbmfme8tpTV6EBVs95buVvf/+bYUHcJAAAA6BdhHyR4PB7deeedcjqd+s1vfqPLLrtMkuRyufTjH/9Yy5cv12OPPab77rsvqPY6QoF58+Zpzpw5Qd9jMpn0xBNPKDqaRe1wejAYDEqwxivBGq9xSaO7nfP6vKptrVNFly0rO0Yy1LbWydnWorKGvSpr2Nuj3SRbYo9tK+0x6UqNSh7UW1fGRVs076IcPb1skz5Y1T7FYWRmcAEnAAAAcDoJ+yDh/fff1/79+3XeeecFQgRJioqK0kMPPaRvf/vbWrp0qX7yk58oIeH485K3bNkiScrPzw/q9R0OhyorKzV+/HhCBEQMk9GktOhUpUWn6ozUnG7n3F63Kluqe6zF4HBWqrnNqbrWetW11mtb7Y5u9xkNRqVHp3buKhHducNEgjV+UEyVmJpjV0GuXcWlDi1+v0S/+n9Ttb28Tp7dtbIY/Bo7NFFGY+R/HwAAABDZwj5IKCwslCRdeOGFPc4lJyfr7LPPVmFhoVasWKFLLrnkuO1t3rxZFotF48ePD+r1O0YwBBs8AKc7q8mqYXFDNCxuSI9zTZ7mHuFChbNSlS1V8vjaVHH4a6mk231RJluPtRg6vo42Rw3QOxsY1144XiV7alVe2aQ7n1ohl9sbOJccb9Pc2dmammMPYQ8BAACAUxP2QcK2be0LxOXk5PR6Pjs7W4WFhdq6detxg4QDBw6otrZW2dnZ+uMf/6hly5Zp9+7dslqtmjZtmm655RZNnNh9KbuOICEhIUH//d//rS+//FKHDh1SZmamLrroIt18881Br88AnO7iLLGKS4zVmMSR3Y77/D7Vtdb3uh5DtatWLm+r9jbu197G/T3aTLDGB9ZiCIxmiElXWnSKzMaw/yeqh4QYq87Nz9THxfu6hQiSVNvYqqeXbdJtl+UTJgAAAOC0Ffaf0isqKiRJGRkZvZ5PT0+X1D4F4Xg6QoHt27fr4Ycf1tSpUzVjxgyVlpbqk08+0eeff66FCxfq0ksv7XHPH/7wB6WkpGjKlCnKzMzUpk2b9MILL+jvf/+7Xn31Vdnt/FCAwctoMColKlkpUcnKTcnuds7ja1N1S3W39RgqnFVytFSq0d2kBnejGtyN2lG3u9t9BhmUGp3SZcvKznUZEm0JYbt1pc/nV3Hpsf89euOT7ZqSnc40BwAAAJyWwj5IaGlpkdS+JkJvOo47nc7jttURCowZM0aLFi3SqFGjJEk+n0/PP/+8nnjiCS1YsECTJk3S8OHDJXWuqXDNNdfol7/8pazW9hXrKyoq9JOf/ERr1qzRggULtHjx4pN+j+Z+2CbOZDJ2+xMIFbOsyrIOUVZiz6kSLZ6Ww9MhqlTRfDhkaG7/utXbqqqWalW1VGuLtna7z2K0KCMmTfbY9tELGV3+jLXEDNRb61VJWY1qG1uPeU1NY6t2HqhX3qiUY14HoO/wXATCA7UIhF5fLF0W9kGCyWSSz+c77nV+v/+419x+++26/PLLFRsbq5SUzg/wRqNRt9xyizZs2KDCwkK9+eab+vnPfy6pc7HH8ePHd1ssLiMjQ48++qguvvhirVixQjt37tTYsSe+3ZvRaFBycuwJ3xeshAQWiET4Slashiqtx3G/369aV70ONjp0sLFCBwJ/VsjRVCWPz6PypoMqbzrY4954a6yGxmdoSHyGhsTbNSTerqHxGcqMS5fV3P9bV3p21wZ3nb9/ax9A73guAuGBWgROb2EfJMTGxqqurk6trb3/hs/lckmSYmKO/1tIs9kcGGnQm1mzZqmwsFAbN24MHIuLizvq+gxDhgzRhAkTtHbtWm3cuPGkggSfz6+GhuOPpjhRJpNRCQnRamhokdd7/CAGCDcGWTTUMkxDU4Zpapdf3Ht9XlW11ASmSFQ0V6qi2aEKZ5XqWuvV6G7W1upd2lq964j2DEqJSjo8iuHw1pWx6cqMSVdKdHKfTZWwGI4fakrS24XbVd/QorNy0hUbZemT1wZwdDwXgfBALQKhl5gYLaPx1D77hn2QYLfbVVdXp8rKSg0Z0nNodMfaCH2xRkFH+x3TKU7knmCmVhxNW1v//SPq9fr6tX1g4BmUaktVqi1Vecndz7jaWlXZUt1jLQaHs1ItbS5Vu2pV7apVSfW2bveZDSalxaQpI7CjROd6DHGW2BPaunLs0EQlx9sOT2/wyxhfI4OlVX6PTb7GFEntbe060KBdB7bI9L5B+aNTND0vQ2dmpynaFvb/LAOnNZ6LQHigFoHQCWIw/3GF/SfWnJwcbdu2Tdu3b9ekSZN6nN+xY0fguuNZuHChysvLdfvtt/d6/cGD7cOkO8KBHTt2aPHixTIajXrwwQd7bfPIewCETpTZpuHxQzU8fmi3436/P7B1ZcXhkMHR0r74Y6WzSm1+rw41V+hQc0WPNqPNUYEdJTK6bFuZHp2mKLOtx/VGo0FzZ2dr0WefyDKiREZb52gqX6tNnr15mjP1fDlb21Rc4tD+qmZ9tbNaX+2sltlk1MQx7aHC5HGpirKG/T/RAAAAGITC/lPqBRdcoPfee08ff/yxLr/88m7namtrtXr1atlsNp1zzjnHbWvTpk0qKirSmDFjeg0S3n33XUnSN7/5TUntCzm+/fbbkqT//M//DCzO2KGsrEwbNmxQTEyMCgoKTubtARgABoNB8dY4xVvjNDZpVLdzPr9PNa66w6MYOkYwtIcMNa46tbS5tKdxn/Y07uvRbqI1oUvA0BkyGJIOypa9QToi7TVaW2XL3qC0ERN1pn2ivnveaO2vbFJxqUNFJQ4dqnFq/fYqrd9eJavZqEljUzU9L0MTx6bKZjH13zcIAAAAOAFhHyTMnj1bw4YN02effaY333xTc+bMkdS+NsI999wjp9OpefPmdVs80ePxaO/evZKkESNGyGJpn388d+5cFRUV6aWXXtKMGTMC4YPX69Vjjz2moqIijRo1St/97nclSVlZWZo5c6Y+//xz3X333XrmmWcCr3Po0CHdcccd8nq9uuGGGxQXFzdg3xMAfcdoMCotOkVp0SmakNo9YHR7PaoKTJWoUsXhaRIOZ5WaPM2qdzeo3t2g7XW7em/8yBkRh79+Y+vbijJHKdocJUu0RedPS9K3p6erstaj9aU1WlNaKUddi9ZsrdSarZWyWUyaPO5wqDAmRRYzoQIAAABCx+APZruDECsuLtZNN90kl8ulM844Q1lZWVq/fr0cDofy8/P1yiuvKDa2c/Xz8vJyzZo1S5L06aefKisrK3DugQce0GuvvSaDwaDJkycrIyNDmzZt0v79+5Wenq6XX36526KJDodD8+bNU1lZmeLj4zVlyhRJUlFRkVwuly666CI9/vjjMptPLpPxen2qqWk+qXuPxWw2Kjk5VrW1zcw/A/pBs8cZGLngaOmcMnGo2SGv33tKbVuMFpkNFvm8RrlbDfJ6DPL7TJLPJKPMSomNVWZSvDKTExRttspqOvyf0SKrySqbySqryXL4mLXLMassRnOfLSwJnE54LgLhgVoEQi8lJfaUt2A9LYIESdq2bZt+97vfqaioSE6nU1lZWbr44ot7HQ1wrCBBkj766CMtWbJEW7Zskcvl0pAhQzRr1izNnz+/28iGDk1NTXrxxRf18ccfa9++fbJYLMrJydGVV16pyy677IQWYjsSQQIQWYoOrdPLW9487nUJ1gSZDEa5fW65vW55fG0D0Lt2FqNFNpM18GcgdDgcPNh6CSYsJotsxo7QwtLlms5j7X+3EFQgLPFcBMIDtQiE3qAKEiIVQQIQWbbV7tT/rX/uuNf9aMrNGp/cOfrJ5/fJ7fUEggW316NWr1sen1ut3vZjrV63DlQ3aFdFrfZV16u1zS2D0SuZvDKbfUpMMCk2xiiT2SePr/3+9vY88vg8/fm2u7EYzUeMhug5OqIzmDgyxOhtJEXXYwQVODk8F4HwQC0CodcXQULYr5EAAKeTcUmjlWRLVF1r/VGvSbYlalzS6G7HjAajosw2RannThDdDJU0UfL5/dq+r05FpQ6tLXWowelRx8a1cdEWTctJV0FehnKGJ8loNASCikDAEAgZOoIKz+Fjns5jvi7HvW61dgk5Oq7paK9rUOHxtcnja1OzTn5b3GM5MqjoGA3Rc3RFz5ETtiNCiUCw0SXEIKgAAAA4NkYkhBgjEoDIs8GxUS9sevWo5/8zf57OtE/ss9fz+fzaurdWxaUOrdlaqaaWzh/qE2KtmpaTrul5GRqXlSjjKUzFOmYf/D55fG2docMRQURrl5CiazDh8XYNNo5+rXsAR1SYjeZu0zi6Bg9Hhg5Wk7XHtd2njfQMMQgqQoPnIhAeqEUg9JjaEAEIEoDItMGxUW9tf7fbyIRkW6KuyP5un4YIR/L6fCrZU6viEofWbatUs6tz7YWkOKum5do1PS9DY4cmnNL6LgPtyKCiW+hw+OtWr1ueI44Fpon4uoQSh78+8tqBYjaauy+MaewyiuLIKR6HgwpLx7oUR1xr62V0BUFFTz6/T7sby9RmdsvcZtXo+FF8n4AQ4TMqEHoECRGAIAGIXKH+4aXN69OWspr2UGF7lVpaO0OF1ARbIFQYlRl/WoUK/cHv93eZ9tF1rYpeRkh0nR7SMeKiazDRbTSFJzDywq+BedyaDaYuYUPXRTJ72d2jWzDR89oei3IarTIZT6/tR3sL9ZJsibqyn0M9AL3jMyoQegQJEYAgAYhs4VKLnjafNu+uUVFphdZvr1Kru3OLyrTEKBXk2TU9N0MjMuIGfajQH9qDirYua0v0Npqi6wKZnQtuunsZTdE1xOiYQjKQQYWl60KYXRfGPGYwYem5iOaRO4H0cVAx0NOMABxfuDwXgcGMICECECQAkS0ca9Ht8WrjrhoVl1Zow44quT2d/cpIjg6ECsPSYwkVThOBoOLI0KHXtSq6BBGHA42jr1XRee1ABRWmwyMqugcTnQtqWnrZfrS3EMNiNOvFja+p0dN01NdKtiXq/nMXMM0BGEDh+FwEBhuChAhAkABEtnCvxVaPV1/vrFZRSYW+3lktT5c+DkmNUcHh6Q9D02JD2EuEmt/vV5uvrdcFMjunebh7BhO+7iMnWr1HX3BzoIKKIx25FSuA/hXuz0VgMGD7RwDAKbFZTCrItasg1y6Xu00bdlSpuMShjbuqdbDaqXf/WaZ3/1mmYemxmp5rV0FehjJTYkLdbQwwg8Egi8kii8kiWfq+/Y6g4pjbjx5zrYrOoKJjrYpGd9MxRyN0aGht6Ps3BABAhCNIAABIkqKsZs2YkKkZEzLldLVpw45KFZU4tHl3jfZXNmtZ5W4t+2K3RtjjVJDXHirYk6JD3W1EgK5BRaylb4KqbbU79X/rnzvudQm2hD55PQAABhOCBABADzFRZp2bP0Tn5g9Rs8ujddsqVVzi0JayWu11NGmvo0l//nyXRmXGa3pehqblpistkVAB4WNc0mgl2RK77dZwpGRbosYljR7AXgEAEBlYIyHEWCMBiGyRVouNTnd7qFDqUMmeWnV9gowdmqCCXLum5dqVkhAVuk4Ch7FrAxB+Iu25CJyOWGwxAhAkAJEtkmuxodmttVsdKipxaNu+um5L5WVnJQZChaQ4W8j6CGxwbNRb29/tNjIh2ZaoK7K/S4gAhEAkPxeB0wVBQgQgSAAi22CpxbqmVq0pdai41KHt5Z0/sBkk5YxIUkGuXVNz7EqItYaukxi0fH6fdjeWqc3slrnNqtHxo9jyEQiRwfJcBMIZQUIEIEgAIttgrMWaBlcgVNh5oHNFfINByhuZHAgV4qL7Yfl/4CgGYy0C4YhaBEKPICECECQAkW2w12JVfYvWlFaqqKRCZYcaA8eNBoMmjEpWQZ5dZ41PV2wUoQL612CvRSBcUItA6BEkRACCBCCyUYudHLVOFZc6VFzi0F5HU+C4yWjQGaNTND3PrjPHpSsmig2F0PeoRSA8UItA6BEkRACCBCCyUYu9O1TjVHFJhYpKHdpf2flvoNlk1MQxKSrIs+vMcWmKshIqoG9Qi0B4oBaB0CNIiAAECUBkoxaPb39Vs4pLKlRc6tDBamfguMVs1KSxqZqel6FJY1Jls5pC2Euc7qhFIDxQi0DoESREAIIEILJRi8Hz+/3aX9msotIKFZU45KhtCZyzWow6c1yaCnIzNHFMiqwWQgWcGGoRCA/UIhB6fREkMGYUABAWDAaDsuxxyrLH6bLzx2hvRZOKSitUXOJQVb1LRSUOFZU4ZLOaNCU7TQW5duWPTpXFzDZ+AAAAA4kRCSHGiAQgslGLp87v96vsUKOKDk9/qGloDZyLtpl1VnaaCvLsmjAqReZTTNcRuahFIDxQi0DoMbUhAhAkAJGNWuxbPr9fuw40qKikQmtKHaprcgfOxUaZddb4dBXk2ZU3MlkmI6ECOlGLQHigFoHQI0iIAAQJQGSjFvuPz+/XjvL69lBha6UamjtDhbhoi6bmpGt6rl05I5JlNBpC2FOEA2oRCA/UIhB6BAkRgCABiGzU4sDw+fzauq9OxYdDhaYWT+BcQqw1ECpkD0+S0UCoMBhRi0B4oBaB0CNIiAAECUBkoxYHntfnU+meOhWXVmjt1ko1u9oC5xLjrCrIsWt6XobGDEsgVBhEqEUgPFCLQOgRJEQAggQgslGLodXm9WlLWa2KSyu0bluVWlo7Q4WUBJumHQ4VRg+Jl4FQIaJRi0B4oBaB0CNIiAAECUBkoxbDh6fNp827a1RcWqH126vkcnsD59ISo1SQ2x4qjMiII1SIQNQiEB6oRSD0CBIiAEECENmoxfDk9ni1cVd7qPDVjmq1ejpDBXtydCBUyEqPJVSIENQiEB6oRSD0CBIiAEECENmoxfDX6vHq653VKi6p0Nc7q+Xu8r9TZkqMpufZVZCXoWFpsSHsJU4VtQiEB2oRCD2ChAhAkABENmrx9OJyt+mrHdUqKqnQxl01avN2/m82LC1WBXl2FeTaNSSVUOF0Qy0C4YFaBEKPICECECQAkY1aPH21tLZpw/YqFZVUaNPuGnl9nY/L4fa49pEKuXbZk2NC2EsEi1oEwgO1CIQeQUIEIEgAIhu1GBmaXR6t31alotIKlZTVdgsVRmbGt4cKOXalJUWHsJc4FmoRCA/UIhB6BAkRgCABiGzUYuRpavFo3bZKFZVUqGRPrbo+RccMTVBBbvtIhZSEqNB1Ej1Qi0B4oBaB0CNIiAAECUBkoxYjW0OzW2u3Vaq4pEJb99ap6wN1XFaiCnLtmpZjV3K8LWR9RDtqEQgP1CIQegQJEYAgAYhs1OLgUd/UqjVb20cqbC+vDxw3SMoenqTpeXZNzbErMdYauk4OYtQiEB6oRSD0CBIiAEECENmoxcGptrFVxaUOFZdWaOf+hsBxg0HKHZGsgjy7po5PV3wMocJAoRaB8EAtAqFHkBABCBKAyEYtoqq+RWtKK1VcWqHdBxsDx40Gg/JGJWt6rl1n5aQrNsoSwl5GPmoRCA/UIhB6BAkRgCABiGzUIrpy1LWouKRCxaUO7a1oChw3GQ06Y3SKCnLtmpKdrpgocwh7GZmoRSA8UItA6BEkRACCBCCyUYs4mkM1zvbpDyUVKq/sfA6YTQblj07V9Dy7Jo9LU7SNUKEvUItAeKAWgdAjSIgABAlAZKMWEYwDVc0qLnWoqKRCB6udgeMWs1GTxqSqIM+uyWPTZLOaQtjL0xu1CIQHahEIvUEVJOzevVtPP/201q5dq+rqamVmZuriiy/W/PnzFRsbG3Q7+/bt0+zZs495zapVq5SSktLt2MqVK/XCCy+otLRULpdLY8aM0Zw5c3TFFVfIYDCc1HuSCBKASEct4kT4/X7tr2xW0eGRChW1LYFzVotRk8emaXqeXRPHpMpqIVQ4EdQiEB6oRSD0+iJIOC3GS3799de67rrr5HQ6NXnyZE2cOFHr1q3Ts88+q+XLl+v1119XfHx8UG1t3rxZkjRu3Djl5eX1eo3N1n2/7yVLluj++++XxWLR2WefLYvFoi+//FK/+tWvtGbNGi1cuPDU3iAAAJIMBoOy7HHKssfpsvNHa5+jSUUl7SMVqupdh3eCcMhmNWnKuDQV5NqVPyZVFvOpfRgAAAA4EWEfJHg8Ht15551yOp36zW9+o8suu0yS5HK59OMf/1jLly/XY489pvvuuy+o9jqChHnz5mnOnDnHvX7Xrl369a9/rYSEBL366qvKzc2VJB04cEDXXXed/vKXv2jmzJm65JJLTu4NAgDQC4PBoBEZ8RqREa/LZ45R2aFGFZe0bylZ3dCqL7dU6MstFYq2mTQlO10FuXadMTpF5lP8DQMAAMDxhP2njffff1/79+/XeeedFwgRJCkqKkoPPfSQYmJitHTpUjU0NByjlU5btmyRJOXn5wd1/QsvvCCfz6cbb7wxECJI0tChQ3XvvfdKkl566aVg3w4AACfMYDBo9JAEXfXtcfrtD8/VPfOm6jvThis53qaWVq9Wbjqk/1v6tX781Aq99EGJNu2qVpuXIcMAAKB/hP2IhMLCQknShRde2ONccnKyzj77bBUWFmrFihVBjQrYvHmzLBaLxo8fH9Trf/bZZ0d9/XPPPVcJCQnauHGjqqqqlJaWFlSbAACcLIPBoLHDEjV2WKKunjVOO8rrVVzi0JqtDtU3u7Xi64Na8fVBxUVbdNb4dE3PsytnRJJMxrD/3QEAADhNhH2QsG3bNklSTk5Or+ezs7NVWFiorVu3HjdIOHDggGpra5Wdna0//vGPWrZsmXbv3i2r1app06bplltu0cSJEwPXV1VVqaamRjabTaNHj+7Rnslk0pgxY7RhwwZt3bqVIAEAMKCMBoPGD0/S+OFJumZ2trbtq1NRqUNrtzrU6PToH18d0D++OqCEGIum5tg1Pc+u7KwkGY0nv0gwAABA2AcJFRUVkqSMjIxez6enp0uSHA7HcdvqWB9h+/btevjhhzV16lTNmDFDpaWl+uSTT/T5559r4cKFuvTSS7u9dnp6+lF3Zuh4/crKyhN4VwAA9C2j0aDckcnKHZmsa7+TrdK9dSouqdDarZVqcHpUuH6/CtfvV2KcVdMOhwpjhyXKeAo7DwEAgMEp7IOElpb2ra+ioqJ6Pd9x3Ol09nq+q44gYcyYMVq0aJFGjRolSfL5fHr++ef1xBNPaMGCBZo0aZKGDx8eeO3o6Oijttmxw0Nz88lv4Wjuh9W2O7bzONVtPQCcGmoRoWCWUZPHpWnyuDRdf4lPW8pqtHpze6hQ3+TWp2vL9enacqXE21QwIUMzJmRozNCEU9rOONxRi0B4oBaB0OuLx33YBwkmk0k+3/EXjPL7/ce95vbbb9fll1+u2NhYpaSkBI4bjUbdcsst2rBhgwoLC/Xmm2/q5z//uYwnMJ80mNfvjdFoUHJy7EndG4yEhKOHIAAGDrWIUJqZFq+Z00bK0+bV+m2VWrFhv77cdEg1ja36aPVefbR6r+zJ0frG5GE6/8xhGpuVGLGhArUIhAdqETi9hX2QEBsbq7q6OrW2tvZ63uVySZJiYmKO25bZbNbw4cOPen7WrFkqLCzUxo0bA6/d9TV609GvYF6/Nz6fXw0Nxx9NcaJMJqMSEqLV0NAiLyt3AyFDLSLcZA+JV/aQXF37nWxt3Fmt1VsqtH5blRy1LXr7sx16+7MdsidH6+y8DJ19RoaG2+MiIlSgFoHwQC0CoZeYGH1CvzTvTdgHCXa7XXV1daqsrNSQIUN6nO9YG8Fut5/ya3W03zGloWNdhqqqqqPe0xev39bWf/+Ier2+fm0fQHCoRYQbowyaPDZNk8emqdXj1cad1SoqdejrHe2hwnsry/TeyjJlpMRoeq5dBXl2ZaXHhbrbp4xaBMIDtQiEzkkOpu8m7IOEnJwcbdu2Tdu3b9ekSZN6nN+xY0fguuNZuHChysvLdfvtt/d6/cGDByV1BgpJSUnKyMhQRUWF9u3b12M0g9fr1a5duyQp6O0kAQAINzaLSdNy7ZqWa5fL3aavdlSruNShr3dWq6LGGQgVhqbFBkKFIan9Ny0PAACEt7Bf5eSCCy6QJH388cc9ztXW1mr16tWy2Ww655xzjtvWpk2b9PHHH+uDDz7o9fy7774rSfrmN78Z1Ov/85//VGNjo84444w+GREBAECoRVnNOntChm7//kT93x3f0H/+2wSdOS5NJqNBB6qa9ZcVu3XPC6t17+Ii/XVlmSpq+356HgAACG9hHyTMnj1bw4YN02effaY333wzcNzlcumee+6R0+nUVVdd1W3xRI/Ho507d2rnzp3yeDyB43PnzpUkvfTSS1q1alXguNfr1W9/+1sVFRVp1KhR+u53v9vtHrPZrEWLFunrr78OHD9w4IAeeOABSdItt9zS928cAIAQi7aZdc4Zmbrjikn6vzu+oRsvzdPEMakyGQ0qr2zS2//YpQXPfan/+X2xPvxyjyrrWkLdZQAAMAAM/pPdbmAAFRcX66abbpLL5dIZZ5yhrKwsrV+/Xg6HQ/n5+XrllVcCCyNKUnl5uWbNmiVJ+vTTT5WVlRU498ADD+i1116TwWDQ5MmTlZGRoU2bNmn//v1KT0/Xyy+/rLFjx3Z7/RdffFGPPPKIzGazpk+fLpvNptWrV8vpdGrOnDn6n//5n5N+b16vTzU1J7915NGYzUYlJ8eqtraZ+WdACFGLiERNLR6t21ap4pIKleypk6/LR4nRQxJUkGvX9Dy7UhJ637o5FKhFIDxQi0DopaTEnvIWrKdFkCBJ27Zt0+9+9zsVFRXJ6XQqKytLF198sW644QbFxXVf/OlYQYIkffTRR1qyZIm2bNkil8ulIUOGaNasWZo/f363kQ1dffrpp/rDH/6gzZs3y2AwaPTo0br22mv1ve9975RWvCRIACIbtYhI1+B0a93WShWVVGjrvrpuCziNG5aogsNrLyTH20LXSVGLQLigFoHQG1RBQqQiSAAiG7WIwaS+qVVrtraPVNheXq+ODxgGSdlZiSrIy9C0XLsSY60D3jdqEQgP1CIQegQJEYAgAYhs1CIGq9rGVq0pdaiotEI79zcEjhsMUu6IZBXk2nVWTroSYgYmVKAWgfBALQKhR5AQAQgSgMhGLQJSdb1LxaUOFZc6tPtgZ6hgNBiUNzJJBXkZOmt8uuKiLf3WB2oRCA/UIhB6BAkRgCABiGzUItBdZV1Le6hQ4tCeisbAcZPRoAmjUjQ9z64p2WmKierbUIFaBMIDtQiEHkFCBCBIACIbtQgcXUWNU0WHQ4XyyqbAcbPJoPzRqSrIs+vMcWmKtplP+bWoRSA8UItA6BEkRACCBCCyUYtAcA5UNau41KGikgodrHYGjptNRk0am6rpeXZNHpsmm9V0Uu1Ti0B4oBaB0CNIiAAECUBkoxaBE1de2aSiEoeKSypUUdsSOG41GzVpXJqm59o1cWyqbJbgQwVqEQgP1CIQegQJEYAgAYhs1CJw8vx+v/Y5mgIjFSrrXIFzNotJZ2anqSDXroljUmQxHz1U8Pn82nmgXh6/QRaDX2OHJspoNAzEWwBwBJ6LQOgRJEQAggQgslGLQN/w+/0qO9QYWKixuqEzVIi2mXTmuHQV5NmVPzpF5i4fjtZudej1T7artrE1cCw53qa5s7M1Ncc+oO8BAM9FIBwQJEQAggQgslGLQN/z+/3adaAhsKVk15AgxmbWWePbQ4WW1jY9+87mo7Zz22X5hAnAAOO5CIQeQUIEIEgAIhu1CPQvn9+vnfvrVVTi0JpSh+qb3YFzBknH+pCTEm/Tb394LtMcgAHEcxEIvb4IEk59PyUAAIAQMRoMys5KUnZWkq6Zla3t5XUqKnHoyy2H1NLqPea9NY2t2ravTrkjkweotwAARAaCBAAAEBGMRoNyRiQrZ0Syxg5L0It/LTnuPXXNrce9BgAAdHdq4xkAAADCUEp8VFDXJcXa+rknAABEHoIEAAAQccYPT1Jy/LFDgpR4m8YPTxqYDgEAEEEIEgAAQMQxGg2aOzv7mNdcMzubhRYBADgJBAkAACAiTc2x67bL8nuMTEiJt7H1IwAAp4DFFgEAQMSammPXlOx07TxQL4/fIIvBr7FDExmJAADAKSBIAAAAEc1oNChvVAp71wMA0EeY2gAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJGkAAAAAAAAIJm8Pv9/lB3YjDz+/3y+frnfwKTySiv19cvbQMIHrUIhAdqEQgP1CIQWkajQQaD4ZTaIEgAAAAAAABBY2oDAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkECAAAAAAAIGkFCBCsrK9OZZ56pBx98MNRdAQadd955R/PmzVNBQYHy8/M1c+ZM3X333dq1a1eouwYMGj6fT2+88YYuv/xynXnmmZoyZYquuOIKvfbaa2prawt194BB64477lBOTo7efvvtUHcFGFS+/PJL5eTkHPW/KVOmBN2WuR/7iRCqqqrSrbfeqpaWllB3BRhU/H6/fvazn+mvf/2rLBaL8vPzlZKSotLSUi1btkx/+9vftGjRIp1zzjmh7ioQ8e6++2698847ioqK0llnnSWLxaJ169bpgQce0EcffaTFixfLarWGupvAoPLWW2/po48+CnU3gEFp8+bNkqSJEydq1KhRPc7bbLag2yJIiEAlJSX60Y9+pD179oS6K8Cg8+677+qvf/2r7Ha7Fi9erPHjx0uSvF6vnnzyST377LP62c9+pr///e+KiYkJcW+ByPXOO+/onXfe0bBhw/Taa69p6NChkqTa2lrdcMMNKioq0iuvvKKbbropxD0FBo/du3froYceCnU3gEGrI0j40Y9+pPPPP/+U2mJqQwSpr6/XI488oquuukp79uxRVlZWqLsEDDpLly6VJP30pz8NhAiSZDKZdOeddyo7O1tVVVVauXJlqLoIDArLli2TJP34xz8OhAiSlJycrPnz50uS/vGPf4Skb8Bg5Ha79dOf/lRGo1ETJkwIdXeAQakjSMjPzz/ltggSIsgrr7yiF198USkpKVq0aJH+/d//PdRdAgadhIQEjR07VlOnTu1xzmAwaPTo0ZIkh8Mx0F0DBpXnn39e7733nmbPnt3jnM/nkyRZLJaB7hYwaD3xxBPavHmz7r33Xg0ZMiTU3QEGnaamJu3Zs0fDhg1TcnLyKbfH1IYIkpmZqV/84heaO3euoqKiAokTgIHz9NNPH/Wc1+sN1CUfooD+ZbVau40K6rBz50499dRTkqTvf//7A90tYFBauXKlfv/73+vSSy/V9773PdZIAEKgpKREfr9fI0eO1DPPPKMPP/xQe/fuVVxcnM4991zdeuutgV94BYMgIYJceeWVoe4CgGN4/fXXtX//fiUnJ2vGjBmh7g4wqPziF7/Qzp07tWnTJkVHR2vBggW69NJLQ90tIOLV1NTorrvuUmZmpu67775QdwcYtDp+mbVy5UqtXbtWBQUFGjJkiDZv3qx3331Xn3zyiZ599lmdffbZQbVHkAAAA2DVqlX67W9/K6l9/YTo6OgQ9wgYPJqamvSXv/wl8LXBYNDevXvV3Nys2NjY0HUMGAR++ctfqrq6Wi+//LISEhJC3R1g0OoIEs466yw9+eSTSk9Pl9S+fslvfvMbLVmyRHfeeaf+/ve/Ky4u7rjtsUYCAPSzwsJC3XLLLXK73Zo7dy6jh4ABZrVatWLFCq1bt04vv/yyRowYoSVLlmj+/Pny+/2h7h4QsZYsWaLCwkLdeOONmj59eqi7AwxqDz74oP72t7/phRdeCIQIUvsz8p577lFeXp5qamr07rvvBtUeQQIA9KNXX31Vt912m1wul+bNm6d777031F0CBh2r1ar09HTFxsZqxowZ+v3vf6/09HStWbNGn3/+eai7B0Sk7du3a+HChTrjjDP0ox/9KNTdAQY9q9Wq0aNH9zrawGQy6YILLpAkbdy4Maj2mNoAAP2gra1N999/v/74xz/KYDDopz/9aWDLOQChlZycrJkzZ2rp0qXatGlT4MMTgL7z6KOPqrW1VVFRUVqwYEG3cx1DrP/0pz9p5cqVKigo0NVXXx2KbgI4rGMh8JaWlqCuJ0gAgD7mcrl02223acWKFYqKitLChQv1L//yL6HuFjBouN1uPfroozp06JAeeeQR2Wy2HtdYrVZJ7aEfgL7ndDolSWvXrtXatWt7vWb9+vVav369zGYzQQLQj9xut37961+rurpa999/v1JTU3tcc/DgQUnB7yxGkAAAfcjr9QZChJSUFD333HOaNGlSqLsFDCpWq1V/+9vfVFFRoUsuuaRHkOd2u7Vy5UpJ0sSJE0PRRSDivfrqq0c9d+utt+rTTz/Vww8/zDaswADoWCto//79mjlzpq666qpu591utz744ANJ0je/+c2g2mSNBADoQ4sWLdKKFSsUExOjV155hRABCJG5c+dKkh566CHt2bMncNzpdOpXv/qVysrKNH78eKY1AAAGhY7n4mOPPabS0tLAcZfLpV/+8pfas2ePpk+frnPOOSeo9hiRAAB9pL6+XosXL5Yk2e12Pffcc0e99nvf+57OP//8geoaMOjceOON2rBhgwoLC3XppZdq6tSpstls2rhxo2pqajR8+HA988wzMplMoe4qAAD97vrrr9f69ev1ySef6PLLL9eUKVOUnJysdevWqaqqSmPGjNHjjz8edHsECQDQR4qKigJzQsvKylRWVnbUa/Pz8wkSgH5ksVj0zDPP6E9/+pP+/Oc/66uvvpLP59OIESN0zTXX6IYbblB8fHyouwkAwIAwm8363e9+p6VLl2rp0qXavHmzvF6vhg8frmuuuUY/+MEPFBMTE3R7Bj8bKAMAAAAAgCCxRgIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAgaQQIAAAAAAAiaOdQdAAAAp5+cnJwTuj4+Pl5r1qzpp970vbffflsLFixQRkaG/vGPf4S6OwAAhBWCBAAAcNJGjRqllJSU414XGxs7AL0BAAADgSABAACctJtvvlnf//73Q90NAAAwgFgjAQAAAAAABI0gAQAAAAAABI2pDQAAYMDdfffdWrZsmRYsWKDzzz9fjz/+uNasWSO3262RI0fqsssu05w5c2Sz2Xq9f9WqVXr99de1fv161dXVKS4uTvn5+brqqqt04YUXHvV1ly9frrfeekubN29WTU2NkpKSNG3aNN10003Kz8/v9R6n06mXXnpJH3zwgcrLyxUdHa38/Hz94Ac/0Hnnndcn3w8AAE4njEgAAAAhs3XrVl155ZX69NNPZbfblZmZqZKSEj300EO64YYb1NjY2OOeBx54QNdff70+/vhjeTwe5ebmymKx6IsvvtB//dd/6c4775TH4+l2j9fr1V133aUf/vCHWr58uXw+n8aPH6/W1lZ9+OGHuvrqq/X555/3eC2Xy6Wrr75aTz31lJxOp0aPHi2Xy6UVK1boxhtv1LJly/rtewMAQLgiSAAAACHz9ttvKykpScuWLdN7772nDz/8UG+++abS0tK0du1aPfLII92uf+mll/Taa6/JbDbr3nvv1apVq7R06VJ98cUX+t///V/FxMToww8/1MKFC7vdt3jxYr3zzjuKjo7W448/ri+++EJvv/22VqxYoWuuuUZtbW268847VV9f3+2++vp6ORwOPf/88/rss8/0zjvvqLCwUFOmTJHf79djjz0mv9/f798nAADCCUECAAA4aQsWLFBOTs5x/1u9enWv9xuNRj3zzDPKy8sLHJsyZUogCHjrrbdUUVEhSWptbdWiRYskSXfccYeuvfZaGY2dH2Uuvvhi/frXv5Ykvf766yovL5ckud1uPf/885Kku+66S5deeqkMBoMkyWaz6d5779Xo0aPldDr14Ycf9ujjr371K82cOTPwdUpKiu666y5JUmVlpcrKyk78GwcAwGmMNRIAAMBJGzVqlFJSUo57XXx8fK/HZ8yYodzc3B7Hv/GNbygrK0vl5eUqLCzUnDlztGbNGjU0NMhsNuvaa6/ttb1LLrlECxcuVEVFhT777DP9x3/8h9asWaPGxkZZrdZet6o0Go16/vnnZbFYlJmZ2ePc7Nmze9yTk5MT+HtNTY1Gjx59zPcPAEAkIUgAAAAn7eabb+71h/NgTZo06ajncnJyVF5eHviN/65duyRJI0eOVFxcXK/3GAwGTZgwQRUVFdq9e7ckac+ePZLaQ4+oqKhe7xsxYkSvxxMSEhQdHd3jeGxsbODvra2tR30PAABEIqY2AACAkElMTDzquZiYGElSQ0ODJKmpqUnS0Uc3dOgIGZqbmyVJdXV13do7EUfbNQIAgMGMIAEAAISM0+k86rmO4CA1NVVS5yiA3nZy6KojeOi4vmNEQUewAAAATg1BAgAACJnt27cf9Vxpaakkady4cZKkMWPGSGqfqtARMhzJ5/Npy5YtktqnQEgKrF+wZ8+eo05DeOONN3T99ddr8eLFJ/EuAAAYXAgSAABAyHz++eeqrKzscbywsFAHDx6U1WrVt7/9bUnS1KlTlZiYqLa2Ni1ZsqTX9t5//31VVlbKYDDo/PPPD9wXExMjt9ut9957r8c9Pp9Pb731llatWnXMERIAAKAdQQIAAAiZlpYW3XrrrTp48GDg2OrVq7VgwQJJ0vz58wNrIkRHR2v+/PmSpCeffFJLliyRz+cL3PfRRx/p3nvvlSRdddVVgZEIcXFxuv766yVJDz/8sJYvXx64x+Vy6cEHH9TmzZsVHx+vq6++uv/eLAAAEYJdGwAAwEl77rnn9NZbbwV17S233KKZM2d2OzZq1CiVlJRo9uzZGj9+vJxOZ2CXhn/913/VzTff3O36G2+8UeXl5XrjjTd0//3366mnntLw4cN16NAhORwOSdJFF12ke+65p9t9t912m3bv3q0PP/xQP/zhDzVkyBClpKSorKxMzc3NioqK0mOPPSa73X6S3wkAAAYPggQAAHDSysrKAj/4H091dXWPYxMnTtSjjz6qJ598UmvXrpXZbNb06dN1zTXX6JJLLulxvcFg0H333afvfOc7ev3117VhwwaVlJQoOTlZ3/rWt3TFFVdo9uzZPe4zm8164okndOGFF2rp0qXavHmztm7dqtTUVF100UWaP39+YAQDAAA4NoPf7/eHuhMAAGBwufvuu7Vs2TL927/9mx599NFQdwcAAJwA1kgAAAAAAABBI0gAAAAAAABBI0gAAAAAAABBI0gAAAAAAABBY7FFAAAAAAAQNEYkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoBEkAAAAAACAoP3/mAf7gJYvKWEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "df_stats = pd.read_parquet(\"./training_stats.parquet\")\n", "\n", "display(Markdown(df_stats.to_markdown()))\n", "# Use plot styling from seaborn.\n", "sns.set(style='darkgrid')\n", "\n", "# Increase the plot size and font size.\n", "sns.set(font_scale=1.5)\n", "plt.rcParams[\"figure.figsize\"] = (12,6)\n", "\n", "# Plot the learning curve.\n", "plt.plot(df_stats['Training Loss'], 'b-o', label=\"Training\")\n", "plt.plot(df_stats['Valid. Loss'], 'g-o', label=\"Validation\")\n", "\n", "# Label the plot.\n", "plt.title(\"Training & Validation Loss\")\n", "plt.xlabel(\"Epoch\")\n", "plt.ylabel(\"Loss\")\n", "plt.legend()\n", "plt.xticks([1, 2, 3, 4, 5])\n", "\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "9. Saving te model." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "53EiesJwv4gU" }, "outputs": [], "source": [ "import os\n", "\n", "output_dir = 'your_directory_here'\n", "\n", "# Save a trained model, configuration and tokenizer using `save_pretrained()`.\n", "# They can then be reloaded using `from_pretrained()`\n", "model_to_save = model.module if hasattr(model, 'module') else model\n", "model_to_save.save_pretrained(output_dir)\n", "tokenizer.save_pretrained(output_dir)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "10. Test the model." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Question: 👤 What time is now?\n", "\n" ] }, { "data": { "text/html": [ "Response 1: 🤖 Regrettably, I am unable to provide a timekeeping service for your computer." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Response 2: 🤖 Regrettably, I do not possess the ability to provide you with the response you seek. As an artificial intelligence language model, my abilities are confined to that of a conversational search engine. My primary function is to assist you with your inquiries and provide useful information. If you have any further inquiries or require assistance with a different matter, I am available to assist you in your search." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Response 3: 🤖 I assume you are currently at the current time." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from transformers import GPT2Tokenizer, GPT2LMHeadModel\n", "from IPython.display import HTML\n", "import torch\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "\n", "tokenizer = GPT2Tokenizer.from_pretrained('nicholasKluge/Aira-Instruct-124M')\n", "aira = GPT2LMHeadModel.from_pretrained('nicholasKluge/Aira-Instruct-124M') \n", "\n", "aira.to(device)\n", "aira.eval()\n", "\n", "question = input(\"Enter your question: \")\n", "\n", "inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors=\"pt\").to(device)\n", "\n", "responses = aira.generate(**inputs,\n", " bos_token_id=tokenizer.bos_token_id,\n", " pad_token_id=tokenizer.pad_token_id,\n", " eos_token_id=tokenizer.eos_token_id,\n", " do_sample=True, \n", " top_k=50, \n", " max_length=200,\n", " top_p=0.95,\n", " temperature=0.7, \n", " num_return_sequences=3)\n", "\n", "print(f\"Question: 👤 {question}\\n\")\n", "\n", "for i, response in enumerate(responses):\n", "\n", " # print only the response and remove the question\n", " display(HTML(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, \"\")}'))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Done 🤗" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "A100", "machine_shape": "hm", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4, "widgets": { "application/vnd.jupyter.widget-state+json": { "09570e24b3874bb99eed96409166e9e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b8dced3f8bc4172a46c93fccca737eb", "placeholder": "​", "style": "IPY_MODEL_e8b56ed15a48482096142f730bb248f3", "value": "Downloading (…)neration_config.json: 100%" } }, "0a323535eb0b47ac8fd9a990fdc5d089": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0b8dced3f8bc4172a46c93fccca737eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1184f98b345e4702999cae47b8cc35bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a8b98fc646244db3a0bdc30439eb2424", "placeholder": "​", "style": "IPY_MODEL_ff75df2d1bec41ed864bff7caa030755", "value": "Downloading (…)olve/main/merges.txt: 100%" } }, "213c5a7614e44882b9ca57a45be83e9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a1a4435eef794b52ac1e7fc1b25f6c06", "placeholder": "​", "style": "IPY_MODEL_a2469a2f4c7a4691a2effec853e06c45", "value": " 1.04M/1.04M [00:00<00:00, 5.20MB/s]" } }, "32fdf73a7b36404fbe56e5972b868291": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3a422de2c36a404db72dcf73dfdf8a49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_be6bc5e6b88742f0967c7116fcb8e5bf", "placeholder": "​", "style": "IPY_MODEL_c4ccef750b32416fb40481bbe3154999", "value": "Downloading (…)lve/main/config.json: 100%" } }, "3f20e57a12354850a04214035a1caa0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5806af5745314c088e1ab7d8b6d6ebf4", "max": 456318, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f032b4ef03e24950b6c103db75fe0b3f", "value": 456318 } }, "3fa1b758af9745ba9fbb74ec28428c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3a422de2c36a404db72dcf73dfdf8a49", "IPY_MODEL_bf45b6222dde45ffb49de8cca8a1bc7e", "IPY_MODEL_452924a5da7e42abafc229cd3227a903" ], "layout": "IPY_MODEL_d0ce04661f204129b35cf3edb503d8e1" } }, "40c2db61393943d6a25c31aaf0b19dad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "42f9ebb1536b4d73ac126a49035fd54a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "452924a5da7e42abafc229cd3227a903": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_947715586fb843819dc016eb87aca236", "placeholder": "​", "style": "IPY_MODEL_bbe4b358ce6d45e2af67c243ab5c4297", "value": " 665/665 [00:00<00:00, 54.4kB/s]" } }, "4a85a12703a04dc8acb6808e520c9121": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5280c947d92a42ff9c81f04b05f8b01d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "55cecbcb63304d9f80f4931a368232e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "567c00bdbe7f45cab7e48eca1a86ee62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_09570e24b3874bb99eed96409166e9e7", "IPY_MODEL_f803d30823a64323886d2fd5315858ca", "IPY_MODEL_db12c8a901d644c0b9aac03b7f1d37a4" ], "layout": "IPY_MODEL_cebda9f32b0d4519b7bebfbf67ac410e" } }, "5806af5745314c088e1ab7d8b6d6ebf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5be34fa7a15a441d96b20daef61c6891": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5d489be7701f4057874e80f081f04c1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "62b2821c929a41ceb050fde699cf6759": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "681e6b5e2a484e63aabe7f9fb2767ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6c37b4e7a676493fafae60d1af2134d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "73d25358055d4fa387d6986aeb2e2244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1184f98b345e4702999cae47b8cc35bc", "IPY_MODEL_3f20e57a12354850a04214035a1caa0d", "IPY_MODEL_89986188d8a34ba5bf7321306680e3e2" ], "layout": "IPY_MODEL_42f9ebb1536b4d73ac126a49035fd54a" } }, "7574f84c6d3c484cb1d07f417c47ba98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "772c278663014691833034b56968365a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7b95ba7da67a413f8e45864ca909cd6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "89986188d8a34ba5bf7321306680e3e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dafc03cbc320485cac8ad104e9e182fa", "placeholder": "​", "style": "IPY_MODEL_6c37b4e7a676493fafae60d1af2134d5", "value": " 456k/456k [00:00<00:00, 3.42MB/s]" } }, "90dba2dc7fec4caaac7101a2bc399d63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_62b2821c929a41ceb050fde699cf6759", "max": 1042301, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f5c6544b91fc4d18bb2ca5a707d7c084", "value": 1042301 } }, "947715586fb843819dc016eb87aca236": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9706bd5a6d164205989e96923280c522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7b95ba7da67a413f8e45864ca909cd6f", "placeholder": "​", "style": "IPY_MODEL_681e6b5e2a484e63aabe7f9fb2767ad4", "value": "Downloading pytorch_model.bin: 100%" } }, "9f34f4ad71f04b64905d9b25f2923ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b0821e0aebd94a37a4e4c7c4472d64fb", "IPY_MODEL_90dba2dc7fec4caaac7101a2bc399d63", "IPY_MODEL_213c5a7614e44882b9ca57a45be83e9c" ], "layout": "IPY_MODEL_0a323535eb0b47ac8fd9a990fdc5d089" } }, "a1a4435eef794b52ac1e7fc1b25f6c06": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a2469a2f4c7a4691a2effec853e06c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a7bb2d4cc1f74f33a62466e130d3c1a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9706bd5a6d164205989e96923280c522", "IPY_MODEL_ef7694f2925d4422804baaede5c64c0b", "IPY_MODEL_ef8d6e8fb2d54711bac0321e577ce9a5" ], "layout": "IPY_MODEL_b629c8287f904d5c904f19d148ff663e" } }, "a8b98fc646244db3a0bdc30439eb2424": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b0821e0aebd94a37a4e4c7c4472d64fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5280c947d92a42ff9c81f04b05f8b01d", "placeholder": "​", "style": "IPY_MODEL_da2f398f990c4e19a0fa6945fcfe9bb0", "value": "Downloading (…)olve/main/vocab.json: 100%" } }, "b629c8287f904d5c904f19d148ff663e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bbe4b358ce6d45e2af67c243ab5c4297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "be6bc5e6b88742f0967c7116fcb8e5bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf45b6222dde45ffb49de8cca8a1bc7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_40c2db61393943d6a25c31aaf0b19dad", "max": 665, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_772c278663014691833034b56968365a", "value": 665 } }, "c4ccef750b32416fb40481bbe3154999": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "cebda9f32b0d4519b7bebfbf67ac410e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d0ce04661f204129b35cf3edb503d8e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8c1b2a4ddc8416aa834c9379b307d4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "da2f398f990c4e19a0fa6945fcfe9bb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dafc03cbc320485cac8ad104e9e182fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "db12c8a901d644c0b9aac03b7f1d37a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4a85a12703a04dc8acb6808e520c9121", "placeholder": "​", "style": "IPY_MODEL_32fdf73a7b36404fbe56e5972b868291", "value": " 124/124 [00:00<00:00, 9.08kB/s]" } }, "e7004f2f677f4401bfbf729720ca987e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e8b56ed15a48482096142f730bb248f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ef7694f2925d4422804baaede5c64c0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_55cecbcb63304d9f80f4931a368232e0", "max": 548118077, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_5be34fa7a15a441d96b20daef61c6891", "value": 548118077 } }, "ef8d6e8fb2d54711bac0321e577ce9a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d8c1b2a4ddc8416aa834c9379b307d4c", "placeholder": "​", "style": "IPY_MODEL_e7004f2f677f4401bfbf729720ca987e", "value": " 548M/548M [00:01<00:00, 293MB/s]" } }, "f032b4ef03e24950b6c103db75fe0b3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f5c6544b91fc4d18bb2ca5a707d7c084": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f803d30823a64323886d2fd5315858ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5d489be7701f4057874e80f081f04c1d", "max": 124, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7574f84c6d3c484cb1d07f417c47ba98", "value": 124 } }, "ff75df2d1bec41ed864bff7caa030755": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "nbformat": 4, "nbformat_minor": 0 }