diff --git "a/AIRA_FineTuning.ipynb" "b/AIRA_FineTuning.ipynb" new file mode 100644--- /dev/null +++ "b/AIRA_FineTuning.ipynb" @@ -0,0 +1,7681 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "Q-bj6K7Qv4ft" + }, + "source": [ + "# Fine-Tuning a Generative Pretrained Transformer (`GPT`)\n", + "\n", + "1. Install required libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OFWjSb_xDWja", + "outputId": "ff2273de-a277-46a2-a70c-26f8aee40a09" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting transformers\n", + " Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m65.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting datasets\n", + " Downloading datasets-2.13.1-py3-none-any.whl (486 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m486.2/486.2 kB\u001b[0m \u001b[31m53.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting codecarbon\n", + " Downloading codecarbon-2.2.4-py3-none-any.whl (176 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m176.0/176.0 kB\u001b[0m \u001b[31m24.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n", + "Collecting huggingface-hub<1.0,>=0.14.1 (from transformers)\n", + " Downloading huggingface_hub-0.15.1-py3-none-any.whl (236 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/236.8 kB\u001b[0m \u001b[31m27.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m111.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n", + " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m81.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n", + "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (9.0.0)\n", + "Collecting dill<0.3.7,>=0.3.0 (from datasets)\n", + " Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m16.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", + "Collecting xxhash (from datasets)\n", + " Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m27.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting multiprocess (from datasets)\n", + " Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.8.4)\n", + "Collecting arrow (from codecarbon)\n", + " Downloading arrow-1.2.3-py3-none-any.whl (66 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.4/66.4 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pynvml (from codecarbon)\n", + " Downloading pynvml-11.5.0-py3-none-any.whl (53 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.1/53.1 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from codecarbon) (5.9.5)\n", + "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from codecarbon) (9.0.0)\n", + "Collecting fuzzywuzzy (from codecarbon)\n", + " Downloading fuzzywuzzy-0.18.0-py2.py3-none-any.whl (18 kB)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from codecarbon) (8.1.3)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.0.12)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.2)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.3)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.6.3)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.16)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.5.7)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n", + "Requirement already satisfied: python-dateutil>=2.7.0 in /usr/local/lib/python3.10/dist-packages (from arrow->codecarbon) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2022.7.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7.0->arrow->codecarbon) (1.16.0)\n", + "Installing collected packages: tokenizers, safetensors, fuzzywuzzy, xxhash, pynvml, dill, multiprocess, huggingface-hub, arrow, transformers, codecarbon, datasets\n", + "Successfully installed arrow-1.2.3 codecarbon-2.2.4 datasets-2.13.1 dill-0.3.6 fuzzywuzzy-0.18.0 huggingface-hub-0.15.1 multiprocess-0.70.14 pynvml-11.5.0 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.30.2 xxhash-3.2.0\n" + ] + } + ], + "source": [ + "!pip install transformers datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pY6M4fSb8SY6" + }, + "source": [ + "2. Load the data from the hub." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 702, + "referenced_widgets": [ + "d9e48cf8d69b404cb0528b4a5bb9c23f", + "4d6d94b6584a4e7aa9b586fe5f63c705", + "9c056246d50b4c40afe381254e14f343", + "c6f1278b534a4b7983adcb776ce7b4fd", + "9a9aa9595c294dcb893b003551852839", + "dc3519c4fcb149f4b212dac78dd3e981", + "30cd4d5828a84d70a0eb63230b943de8", + "2dd26b8f83324717aa5ef039a4410675", + "783b23c5e00e4279b20386b6af6aefd5", + "b0ede4e791c0403dbc90bb02eb44d389", + "fecfd7ecba6547219f36de89e154f8c4", + "cd3d68f82a984432b60e4935a579fb64", + "3d69341decff4c0194a5df523f2e5ef7", + "d06879a3e92e490ca28c2193973c2fbb", + "c1e8f36806354b8aa90285c545111df3", + "0c1d8e086a46485d9b3fac20504ad7e2", + "0ce91c595730407990bf0e723abb52ca", + "1eceb7c2191b4028b9b59155bddb629f", + "2c823bac025d47e7bbf1482f366cec75", + "95d9b5c626ce424aa3e007953708db9c", + "bf4b344c06ce453599b77c4e5583cf7d", + "61267d4dc5bc456e9a7b27244cd528eb", + "c2b43552429842dcbb5c4180d5692f1d", + "2fb2ebf6a251413f85d31c479b5c8ebe", + "06a59990a8e849cb8c904fd847de5482", + "276a0d8085d04a6e977a399598b5c3ec", + "8ea02ee1bc014685903911c508008ee8", + "769248f0fde6491189c436065a408711", + "8c33149721aa46038daadd9ec17cf5f1", + "e366208c46f64a5db9da8dc482e3af77", + "99efe6ebfd1e4ce1adc14e00cea36e36", + "84dec9e3ffa0475692f66136978d49f6", + "0d17dcbf836144509f99e1e38b860693", + "70936aca40034f1585b1c0ce23283493", + "596bbbf672c24467b484471a24c5f000", + "ecd7c0f82f0647a88612439a615e95b2", + "2bda638a3089418189e40b43336e2ec5", + "790a23cb2bf1485ba1fdc3936ecaf782", + "645d4bd2764546cb959cf1811153d9d0", + "9ed860ed51ea4dd39507fa144e1bdadf", + "d32ab3e25fb84ead9c05ad253fe46e93", + "88a7da23d7f5414d85f77c0fb797072d", + "956a841201544355b72bd0875f852727", + "259421baf1da43858a0412c14b848640", + "170ee76891de4791839232d5c725a823", + "61f4d3bdadd647b38ba22fa10052f24d", + "89ecb77da42042ceb338ab2830e8169c", + "cc77332985674b8faead20cc86838760", + "7f2a103614744b95aaa2552b15963276", + "275832c1ff5e4ab7a70c5239e9b5050f", + "67684be3b71d46d5828bc69781423274", + "6521292a25f241d5b563971bc16a6fcd", + "5ce298a07c9b4ce2b2c803ac7e75f829", + "f74a7011a3014fffa37d92129bdc7421", + "7be1756853ef46e09646866c301627c4", + "7b22b84aca3644319f731852b1e3b040", + "e14bf2addc1047c284701011ce97b249", + "0535fdc113dc4d3d89bef23302be1e63", + "03107de13b4c40abb408a36a67b26596", + "690f765ca74e4cf1a263bba1943302bb", + "83624f679b464ffa93096a3d29546c70", + "3cec8cf19ee44491aa7d40f31879112b", + "0baa95fe9bff4f47bdc8ec447b295587", + "799f8ec3f5ae4d938d04bdea16b964f7", + "9a22e71845484a2db8ac6f826846220e", + "32671f3bd3904184a877513c7a70e29c", + "75c121690ee740ad8dccc8655819bb60", + "5d8735309625479aa44e21d8aa74f2ea", + "1ac30d68d0e14d158fd7112863a4514e", + "73c40bd736f546a29f2e9c4cfc5c1962", + "11ca46a9caf342bf8c2207a28153499e", + "1200df7ca4904df29def632aab9d6cf1", + "2b4e6f056871491b8255a1bcc88aafaf", + "64c3c307d7ff4588ab62c2adfa4fff75", + "573e8db169e3442b9ee3364b0fd730e7", + "23305514b6ad4c9ca32453ff3ddbeb12", + "f6436b699a294b908f42bf07523accef", + "20d3fe94880d42d9933eed798bc7e834", + "310f80a796ca4fcaadbe56b06ffd356e", + "525ed7d03ad34c6b92c41ab5f856477a", + "267d4e2077fa441fab2210e85559c530", + "0993950d12b04a65bceedbd79593dda3", + "9047d2b6465d4d3296227805f276b7c9", + "6a8c9b8936924429b8651bc812bda649", + "63fc04394fce446b9660f19f065d1a24", + "2b05e9f1a0ab47568cff646264cadba2", + "26bf84b4726040d7a936c46a8e119fe6", + "028b1ad7812149fdbadd9472555eae63", + "01956825f60b45a1afc34045d153055b", + "622d696b4068401b93f5b2bae0074c62", + "458a951aa25e489fa544507fb625043d", + "436bf1ac107e44c7a62b483c8fee5a39", + "2375650cbab7417a9c729fa04d45f63e", + "8a8a637905b34ef6943dd908b32fa0ba", + "0d03b45e3d2e4c849fbb888551257f7e", + "f112ddc798d74a318cb05a66fa305761", + "20e0d95da7fd4042b7e00695e05bfd69", + "7612cc9b1ee04257980ef1fa8d644142", + "ad3fa15bbb8d495cb3a7247e75b6a839", + "32aa48ecce9f4463812e99f39cc9240c", + "fb5c8a3a5f224a90ba8219a7d761fbfb", + "874341edbb69484896c249e121095740", + "60fbf73caded446a8992087db6bac051", + "a7550b737bfd4f04a7ccaea9e434650b", + "ac72fc383d104facb2c499f91d361afe", + "f724182dc2cf41c1a809a44b7c035751", + "b4ee35b41ee3499ba7a022f0074c912d", + "0e8cc859a0184905a6df4068d934cd5d", + "2ef17c1437a04819825095ca10bc0839", + "eaa8e8c2186d45a0ac68fd485ead5f8d", + "d7e3d3b78ca448738afd7990838fd58d", + "4a5fd86c98e04def91cd943881f9da63", + "a32809d1f9874f5796e1a521ebacdc8b", + "aaa34ad82fcf4edb805054e8b9d68e29", + "3e23df5be01941ffb825915245b46c7c", + "0bd061df19f240308df7697aea1811ea", + "25e95ecfb5894eb497c6b0448754c3c2", + "1aa95d5717694f909f993fda65750ae7", + "3ea2901b3ab746b0bf3bd7e07f74fb51", + "c9c7c2d9fc8d4457b91bb2000bea2f29", + "71024cc40f9b439ea112bf7afdd65270" + ] + }, + "id": "RNH_RDozXSqn", + "outputId": "18a1e859-c165-4573-8a28-a8fa3b0df10d" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d9e48cf8d69b404cb0528b4a5bb9c23f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading readme: 0%| | 0.00/5.11k [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
promptcompletion
0Como posso curar minha insônia.Uma maneira possível de curar a insônia é mant...
1Beber muita água faz mal?De acordo com a Mayo Clinic, beber muita água ...
2Dê-me uma lista dos melhores filmes de golfe q...-Caddyshack\\n- Caneca de lata\\n- O melhor jogo...
3Qual é a principal causa do aquecimento global.A principal causa do aquecimento global é o au...
4O que posso fazer para reduzir meus resíduos d...Compre itens com embalagens mínimas e evite pl...
.........
52869Você poderia elucidar a ideia de otimização de...A otimização Mesa refere-se à circunstância em...
52870Quais bancos têm as melhores taxas de juros no...As melhores taxas de juros atualmente variam d...
52871Em quais ações devo investir.Depende de seus objetivos de investimento e to...
52872Como fazer filmes?Para fazer filmes, você precisa ter algumas co...
52873Quais são os ingredientes para um coquetel Moj...Os ingredientes para um coquetel Mojito são ru...
\n", + "

52874 rows × 2 columns

\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n", + " " + ], + "text/plain": [ + " prompt \\\n", + "0 Como posso curar minha insônia. \n", + "1 Beber muita água faz mal? \n", + "2 Dê-me uma lista dos melhores filmes de golfe q... \n", + "3 Qual é a principal causa do aquecimento global. \n", + "4 O que posso fazer para reduzir meus resíduos d... \n", + "... ... \n", + "52869 Você poderia elucidar a ideia de otimização de... \n", + "52870 Quais bancos têm as melhores taxas de juros no... \n", + "52871 Em quais ações devo investir. \n", + "52872 Como fazer filmes? \n", + "52873 Quais são os ingredientes para um coquetel Moj... \n", + "\n", + " completion \n", + "0 Uma maneira possível de curar a insônia é mant... \n", + "1 De acordo com a Mayo Clinic, beber muita água ... \n", + "2 -Caddyshack\\n- Caneca de lata\\n- O melhor jogo... \n", + "3 A principal causa do aquecimento global é o au... \n", + "4 Compre itens com embalagens mínimas e evite pl... \n", + "... ... \n", + "52869 A otimização Mesa refere-se à circunstância em... \n", + "52870 As melhores taxas de juros atualmente variam d... \n", + "52871 Depende de seus objetivos de investimento e to... \n", + "52872 Para fazer filmes, você precisa ter algumas co... \n", + "52873 Os ingredientes para um coquetel Mojito são ru... \n", + "\n", + "[52874 rows x 2 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "from datasets import load_dataset\n", + "\n", + "dataset = load_dataset(\"nicholasKluge/fine-tuning-instruct-aira\", split='aira_instruct_portuguese')\n", + "\n", + "df = dataset.to_pandas()\n", + "df = df.sample(frac=1)\n", + "df = df.reset_index(drop=True)\n", + "\n", + "display(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BfKTTBZqCniY" + }, + "source": [ + "3. Load `BloomTokenizerFast` and add the chosen special tokens (`'<|startoftext|>', '<|endoftext|>','<|pad|>'`)\n", + "4. Create demonstrations by prepending the special tokens.\n", + "5. Calculate the maximum length (in tokens) that the demonstrations have (the dataset was constructed, for efficiency and fast training, to be below the 300-token range)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 185, + "referenced_widgets": [ + "5a269dd5af7145afb3ff77251c37a541", + "1dc3a9075a7444ad9b85005b3d97c0c6", + "b127a0fa8c8742a9b71c404ea695a453", + "ec25e96bc5dd44e9ba914aad7f6d96af", + "8f4bcbf44d414c12b997295b40a4e3ea", + "4d01c2954af14518a4cc1df1ace54fde", + "d90838db1a0e4e1db923c932b0499e1c", + "91ed5a79fb434cb0a7b2e46bb5489018", + "5216239dbacc4aecaed6515a617ed564", + "51931eac7ab445018202bb7f5b9b2ed0", + "d847da699488444d87cacec52820f3a7", + "b688b02e6f6548179ab064a1ce454745", + "4f7ffdefcf174f259e89d7fe73977e96", + "bdca03e1d74b4e6c93595d5412caa119", + "8b35ee4d5d6c462c9e2076ae567577f4", + "70348bde0e45482a9cca05075f70c9ab", + "a79081a203a946cd84ed5bd603597ec8", + "f0d7f07618de440bb703739a32c731ea", + "77a2c4d7b87e4f1c9f6d8004c5c252cf", + "35e3d18623344d91bd27f4dc910488c1", + "750efd3ab43a4d6f8da4ab1809c16764", + "c570d605cbed4e998acc9b2802318e1f", + "460a31fe26c847eebf395b2573abb02e", + "eebcd0a35be943d2a781dc0d15ee5c93", + "5ec1cafb63f54339b667f1aa8cb03a3d", + "6db51358a0954e2296d926e70521dbb3", + "e2fad4fe3fc34fc690747a1bce72b1da", + "9a4f95508a184921b8584ed91078ca26", + "faee2629b3c74773bd2f3538c275c1f9", + "44bdc888d6804f6681aade6e1b64fcac", + "76038567a3f44befae499e2f38831191", + "95c126c4f2d14e7fa5d7befe6693670e", + "14e4534b4516486aa39e179b69c6d24e" + ] + }, + "id": "hfu84fWIv4f9", + "outputId": "e2de3a5b-80b8-4c71-80ad-8261226027ce" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5a269dd5af7145afb3ff77251c37a541", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading (…)okenizer_config.json: 0%| | 0.00/222 [00:00',\n", + " eos_token='<|endoftext|>',\n", + " pad_token='<|pad|>')\n", + "\n", + "df['demonstrations'] = tokenizer.bos_token + df['prompt'] + tokenizer.eos_token + df['completion'] + tokenizer.eos_token\n", + "\n", + "df['length'] = df['demonstrations'].apply(lambda x: len(tokenizer.encode(x)))\n", + "\n", + "print(\"Total number of demonstrations: \", len(df))\n", + "print(f\"The longest demonstration is {df['length'].max()} tokens long.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kYvd27UdCnib" + }, + "source": [ + "6. Create the Dataset class." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "WlbAfMQ4v4gA" + }, + "outputs": [], + "source": [ + "import torch\n", + "from torch.utils.data import Dataset\n", + "\n", + "max_length = 300\n", + "\n", + "class DemoDataset(Dataset):\n", + "\n", + " def __init__(self, demonstrations, tokenizer, max_length=max_length):\n", + "\n", + " self.tokenizer = tokenizer\n", + " self.input_ids = []\n", + " self.attn_masks = []\n", + "\n", + " for demo in demonstrations:\n", + "\n", + " encodings_dict = tokenizer(demo,\n", + " truncation=True,\n", + " max_length=max_length,\n", + " padding=\"max_length\")\n", + "\n", + " self.input_ids.append(torch.tensor(encodings_dict['input_ids']))\n", + " self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))\n", + "\n", + " def __len__(self):\n", + " return len(self.input_ids)\n", + "\n", + " def __getitem__(self, idx):\n", + " return self.input_ids[idx], self.attn_masks[idx]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Iza0NCjSCnif" + }, + "source": [ + "7. Split the data into training and validation splits." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-IOfa2PEv4gD", + "outputId": "7561c54b-ca62-4641-e7f5-365f6f7dd868" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of training samples: 47,586\n", + "Number of validation samples: 5,288\n" + ] + } + ], + "source": [ + "from torch.utils.data import random_split\n", + "\n", + "dataset = DemoDataset(df.demonstrations.to_list(), tokenizer, max_length=max_length)\n", + "\n", + "train_size = int(0.9 * len(dataset))\n", + "val_size = len(dataset) - train_size\n", + "\n", + "train_dataset, val_dataset = random_split(dataset, [train_size, val_size])\n", + "\n", + "print('Number of training samples: {:,}'.format(train_size))\n", + "print('Number of validation samples: {:,}'.format(val_size))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lfOIsZLUCnim" + }, + "source": [ + "8. Create the `DataLoaders` and specify the `batch_size`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "cUkCNV-6v4gG" + }, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n", + "\n", + "train_dataloader = DataLoader(\n", + " train_dataset,\n", + " sampler=RandomSampler(train_dataset),\n", + " batch_size=6\n", + " )\n", + "\n", + "\n", + "validation_dataloader=DataLoader(\n", + " val_dataset,\n", + " sampler=SequentialSampler(val_dataset),\n", + " batch_size=6\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_qljce5ECnip" + }, + "source": [ + "9. Load the base model (`BloomForCausalLM`)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 497, + "referenced_widgets": [ + "1c1114d4b6b8444b8509b5fa01076d10", + "938310067bd548d7bdcc428d70186660", + "cac98c9788da4d56a75e9b50b165b513", + "e2b8561b43fe41cd80c913c46ef075ab", + "898b72964dc5439a8ac43efc232ff335", + "b8111a7f1dab4296ab279c78940b574a", + "6da6fa826746450b9476aa4e135418bb", + "97bb7dd211f74e0a90866f59549ce90c", + "75b9800955e84822acbe2411acc1abc5", + "6cc0e75c86b14ae889e766871b127e04", + "18a30366a95b4904a9c5db3644cfe431", + "52597fc892664658bd0a8d12825c0f44", + "214a356f4ad8479caefefcce1a03b1de", + "caba7a442151440d803eb6baefed4b9f", + "9b23b317d6da4e539d6593a11906f6bf", + "4c2983b6314a45e98628f502228508d7", + "f0b08121718a4635bb09f14e9d1e825e", + "592b7409266e4ee9a98bc39291cf0ad0", + "e386206ba654406f80b7d7ab2d3d3e87", + "0894d95aeedf4162a51ab5ac11d71d40", + "fb573654fb4545a4ac9426fcca6fa49a", + "cc72777ede0241c9b50892176b32142a" + ] + }, + "id": "Rmg-5YJqv4gH", + "outputId": "d0a9dcc2-3d1c-4ff7-bb04-941faf3f3ab4" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c1114d4b6b8444b8509b5fa01076d10", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/715 [00:00 model.config.n_layer - UNFREEZE_LAST_N:\n", + " for parameter in m.parameters():\n", + " parameter.requires_grad = True\n", + "\n", + " for parameter in model.transformer.ln_f.parameters():\n", + " parameter.requires_grad = True\n", + "\n", + " for parameter in model.lm_head.parameters():\n", + " parameter.requires_grad = True\n", + "\n", + "num_frozen_layers = sum(1 for parameter in model.parameters() if not parameter.requires_grad)\n", + "num_trainable_layers = sum(1 for parameter in model.parameters() if parameter.requires_grad)\n", + "\n", + "print(\"Number of frozen layers:\", num_frozen_layers)\n", + "print(\"Number of trainable layers:\", num_trainable_layers)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eeieIbKxCnit" + }, + "source": [ + "11. Set the training hyperparameters." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "qlbLg6tqv4gI" + }, + "outputs": [], + "source": [ + "from transformers import get_linear_schedule_with_warmup\n", + "\n", + "epochs = 2\n", + "\n", + "warmup_steps = 1e2\n", + "\n", + "sample_every = 400\n", + "\n", + "optimizer = torch.optim.AdamW(model.parameters(), lr = 5e-4, eps = 1e-8)\n", + "\n", + "total_steps = len(train_dataloader) * epochs\n", + "\n", + "scheduler = get_linear_schedule_with_warmup(optimizer,\n", + " num_warmup_steps = warmup_steps,\n", + " num_training_steps = total_steps)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c772AMWjCniu" + }, + "source": [ + "12. Training/Validation loop. Track the carbon emissions of your work by using `codecarbon`. 🌱" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_X_m8XOtv4gR", + "outputId": "bd158bfc-c45c-44c0-b98a-9152c6f9c7bb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Beginning epoch 1 of 2\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 5%|▌ | 400/7931 [07:14<2:15:29, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 400 of 7931. Loss:1.181971549987793.\n", + "\n", + "\n", + "Example output: O que está seguindo o formato de arquivo que o Delta Lake segue para gravar registros? CSV, JSON, PARQUET, AVRO, ORCO Delta Lake permite que as estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas expressadas em estatísticas express\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10%|█ | 800/7931 [14:32<2:08:24, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 800 of 7931. Loss:1.4029899835586548.\n", + "\n", + "\n", + "Example output: Eu quero converter um VHS para um DVD, como faço isso.Criar e acessar as quantidades de software necessárias para conversão\n", + "2. Fone / Recomendações:\n", + "3. Oferecer alguns recursos de personalização de configuração\n", + "4. Localização da tela\n", + "5. Verifique o conteúdo de código da linguagem (NLP) no usuário\n", + "6. Use sua própria experiência de usuário\n", + "7. Verifique se você está no mercado\n", + "8. Ouça ou assistimento\n", + "9. Reduza a quantidade de tempo necessário para colet e conectar-se\n", + "10. Por fim, teste seus próprios vídeos\n", + "11. Por mais tempo do tempo, e, como resultado, por mais tempo\n", + "12.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 15%|█▌ | 1200/7931 [21:47<2:01:09, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 1200 of 7931. Loss:0.9327138662338257.\n", + "\n", + "\n", + "Example output: Quais são as limitações do infra bayesianismo?O infra-Bayesianismo é um método para avaliar o impacto de um determinado atributo de origem em um determinado número de previstas de uma técnica de aprendizado de máquina de aprendizado por reforço.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 20%|██ | 1600/7931 [29:00<1:53:58, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 1600 of 7931. Loss:1.2012759447097778.\n", + "\n", + "\n", + "Example output: Qual é a maneira mais eficiente de carregar uma mochila sem esmagar nada dentro dela.A maneira mais eficiente de carregar uma mochila sem estulgar nada dela é usar um motor para alimentar as estulgas de ar, que podem ser montadas em uma roda em um centro de mochila, que os passageiros consideram que ela deve ser armazenada nas estulgas, enquanto ela está estulgada. Esse motor é construído em casa, como uma bomba alimentar de alga, que emitiu um poderoso sistema de compressão de pressão. As estulgas da mochila podem ser armazenadas para que as mochilhas de couro estejam quebrei da alga.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25%|██▌ | 2000/7931 [36:15<1:46:44, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2000 of 7931. Loss:0.9945976734161377.\n", + "\n", + "\n", + "Example output: De que maneiras a empatia humana e as interações sociais mudam devido à influência do aprendizado profundo?Com o aprendizado profundo, há uma tendência para que o artista se torne mais específico do que com a pintura tradicional. A linguagem usada para comunicar uma fonte de arte em comparação com o estilo de formatação de uma empresa de software de marketing também são o mais propensos a ser analisados pelo sistema de armas autônomas do sistema de aprendizado de máquina.\n", + "\n", + "A empatia humana é usada de várias maneiras ao conversar com falantes nativos de idiomas diferentes.\n", + "\n", + "Por exemplo, a linguagem de fala natural pode ser usada para ajudar no aprendizado de idiomas. Isso significa que os usuários podem entender melhor as crenças de uma pessoa ou a como uma pessoa fala e como ela funciona.\n", + "\n", + "A empatia humana também pode ser usada para desenvolver sistemas de reconhecimento facial que mostram às pessoas com a boca danificada ou com dificuldades de fala como o do que significa. Isso pode ajudar a criar sistemas de gerenciamento de dados e\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 30%|███ | 2400/7931 [43:32<1:39:35, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2400 of 7931. Loss:1.0876305103302002.\n", + "\n", + "\n", + "Example output: Qual é a diferença entre um Moleskine e um Bullet Journal.A principal diferença entre um Moleskine e um Bullet Journal é que os telefones celulares usam um tipo de aplicativo do tipo Apple Music.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 35%|███▌ | 2800/7931 [50:45<1:32:23, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2800 of 7931. Loss:0.6635352969169617.\n", + "\n", + "\n", + "Example output: Como posso passar mais tempo com meu cachorro?Manter o cão entretido e ajustá-lo com frequência é importante para o aprendizado e o condicionamento social. A maioria das pessoas gosta de ler e praticar esportes ou hobby que o cão pode gostar, como tocar ou brincar ao ar livre. Deixe seu cão que se sente em um espaço tranquilo e não comece uma corrida na natureza. Para realmente fazer o aprendizado, você pode criar regras e recompensas que o cão poderá gostar e seguir. Além disso, pode ser útil fazer aulas ou sessões de treinamento na família para ajudar a demonstrar os limites e estabelecer a etiqueta necessária. Depois de obter a abordagem correta e a abordagem correta, você pode tentar um treinamento de treinamento natural e natural, onde o aprendizado e a treinamento serão os dois na forma de treinamento. Existem algumas coisas que o cão pode gostar de fazer, como fazer uma caminhada no caminho ao ar livre ou perseguir um gaio ou uma tartaruga. Por fim, você pode\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 40%|████ | 3200/7931 [58:02<1:25:11, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 3200 of 7931. Loss:0.7815229892730713.\n", + "\n", + "\n", + "Example output: Como funciona uma rede neural recorrente?Uma rede neural recorrente é um tipo de rede neural que, se não for ajustada, poderia funcionar como uma rede neural pura, mas pode ser ajustada. Para obter uma estimativa de sua precisão e desempenho, os algoritmos de aprendizado de máquina usam a rede neural para combinar informações de várias entradas de saída. Ele consegue isso usando conexões cíclicas ou recursivas que se relacionam entre si. Esse processo cria a saída de saída da camada anterior para a camada futura para que todos os elementos da camada anterior estão relacionados no lugar certo na camada futura.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 45%|████▌ | 3600/7931 [1:05:17<1:17:57, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 3600 of 7931. Loss:0.6770194172859192.\n", + "\n", + "\n", + "Example output: Qual é a melhor maneira de definir uma mesa formal.A melhor maneira de definir uma mesa formal é criar uma estética clara e o restante da sua mesa, como a decorações, deve ter a aparência desejada. Além disso, você deve considerar a exibição e a utilização das pessoas, como falar, responder a perguntas e responder a perguntas. Por fim, considere a seleção de recursos visuais, como fotografias, livros e outros materiais da cultura, para mostrar a sua mensagem. Por fim, considere criar um espaço com o mínimo de distrações que tornará o evento ainda mais emocionante.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50%|█████ | 4000/7931 [1:12:32<1:10:46, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4000 of 7931. Loss:1.0253773927688599.\n", + "\n", + "\n", + "Example output: Estou pensando em mudar de carreira, você pode me dizer quais empregos estão crescendo rapidamente na minha área?Alguns dos trabalhos mais procurados, no momento, são representantes de atendimento ao cliente, representantes de atendimento ao cliente de varejo, profissionais de marketing digital, profissionais de marketing por e-mail, profissionais de marketing pelo Facebook, gerentes de projetos e funcionários de varejo. Além disso, o mercado está enfrentando problemas em seu setor local e está abrindo a vida para novos sabores novos valores novos novos novos novos novos novos valores novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novosividades novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos novos\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 55%|█████▌ | 4400/7931 [1:19:49<1:03:39, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4400 of 7931. Loss:0.8582239747047424.\n", + "\n", + "\n", + "Example output: Onde posso encontrar a melhor cozinha dominicana na cidade de Nova York?A melhor cozinha dominicana em sua área, seja em sua localização nacional ou em sua cidade ou local de trabalho, pode ser encontrado em locais como \"Espargos assados ​​e salteados de arroz\n", + "\", \"Frigideiras de frigideira\n", + "\" e \"Grama e arroz\n", + "\".\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 61%|██████ | 4800/7931 [1:27:03<56:27, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4800 of 7931. Loss:0.6973161697387695.\n", + "\n", + "\n", + "Example output: De que forma ter filhos pode melhorar sua qualidade de vida?Uma maneira de ser muito mais produtivo ao seu estresse é ter filhos. Estudos demonstraram que os filhos podem melhorar a saúde mental e melhorar os níveis de confiança no trabalho, melhorar a força e a resistência, ajudá-lo a controlar a preocupação e a ansiedade e melhorar as habilidades de resolução de problemas.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 66%|██████▌ | 5200/7931 [1:34:18<49:12, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 5200 of 7931. Loss:1.0171891450881958.\n", + "\n", + "\n", + "Example output: Quais são as melhores maneiras de limpar pisos de madeira.Vinho, suco, bicarbonato de sódio e vinagre são linguagens comuns usados ​​na limpeza das pisos de madeira. O vinagre é projetado especificamente para superfícies de madeira. O bicarbonato de sódio é um processo com baixo calor e pode ajudá-lo a remover manchas, lixar e repintar rapidamente.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 71%|███████ | 5600/7931 [1:41:32<42:02, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 5600 of 7931. Loss:0.6794105172157288.\n", + "\n", + "\n", + "Example output: Escreva um tweet da perspectiva de um cachorro que está bravo com os esquilos em seu quintalLidar com as pessoas e animais em ambientes fechados não é uma experiência divertida de todas as noites. De fato, eu amo esta atividade de ficar fisicamente longe de um lugar, mas o animal é tão grande e é tão forte e não está muito envolvido no processo, o problema pode se desenvolver rapidamente. Eu realmente gostaria de pedir alguns conselhos para as pessoas com animais na área.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 76%|███████▌ | 6000/7931 [1:48:47<34:49, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6000 of 7931. Loss:0.701941192150116.\n", + "\n", + "\n", + "Example output: Preciso de ajuda com o dever de matemática. Você pode explicar como resolver essa equação.Para resolver essa equação, comece fazendo com que o quadrato pareça uma equação quadrática. Comece com cada uma delas e unindo-as.\n", + "2 Em seguida, procure uma saída que corresponda ao valor da variável desconhecida.\n", + "3 Assim que encontrar a saída, divida-a pela raiz da equação.\n", + "4 Em seguida, ajuste as entradas recebidas para os números de um triângulo.\n", + "5 Por último, ajuste as entradas recebidas para os números de uma forma triangular para encontrar uma saída.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 81%|████████ | 6400/7931 [1:56:02<27:35, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6400 of 7931. Loss:0.7082207798957825.\n", + "\n", + "\n", + "Example output: Quais feriados são celebrados no Reino Unido.Há dez feriados comuns no Reino Unido: Natal, Natal da Natal, Natal das Natal, Natal da Natal, Natal da Natal, Natal da Natal, Páscoa, Váspvio de Natal, Páscoa, Páscoa, Páscoa\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 86%|████████▌ | 6800/7931 [2:03:16<20:23, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6800 of 7931. Loss:0.6168582439422607.\n", + "\n", + "\n", + "Example output: Qual é a diferença entre um empréstimo com taxa flutuante e um empréstimo com taxa fixa.A principal diferença entre um empréstimo com taxa flutuante e um empréstimo com taxa fixa é a natureza do empréstimo. Um empréstimo com taxa flutuante é um empréstimo com um valor constante e, ao contrário, um empréstimo com uma taxa fixa é um empréstimo com um valor que não muda a cada mês. Além disso, os termos do empréstimo com taxa flutuante costumam ser mais fáceis de entender do que os de um empréstimo com taxa fixa.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 91%|█████████ | 7200/7931 [2:10:31<13:10, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 7200 of 7931. Loss:0.6584493517875671.\n", + "\n", + "\n", + "Example output: Como posso melhorar minhas pontuações no SAT.Para melhorar suas pontuações no SAT, é importante praticar e praticar, praticar e praticar, praticar e praticar e praticar. Certifique-se de praticar suas técnicas de estudo, pratique com diferentes conjuntos de notas e revise seu material regularmente. Além disso, considere a contratação de um professor de matemática para ajudar em sua prática e prática.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 96%|███���█████▌| 7600/7931 [2:17:46<05:57, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 7600 of 7931. Loss:0.7803429961204529.\n", + "\n", + "\n", + "Example output: Qual é a melhor maneira de se livrar das pulgas em minha casa.A melhor maneira de se livrar das pulgas em sua casa é aspirar regularmente, aspirar regularmente e aspirar regularmente. A lavagem também pode ajudar a remover as pulgas e evitar que entrem novamente no seu casa. Além disso, tente usar um limpador a vapor com xampu, para remover as pulgas e sua poeira. Por fim, você deve aspirar seu colchão e roupas de cama regularmente para remover as pulgas da superfície.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 7931/7931 [2:23:46<00:00, 1.09s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Average Training Loss: 0.8884864824519544.\n", + "\n", + "\n", + "Validation loss: 0.7447287873143241.\n", + "\n", + "\n", + "Beginning epoch 2 of 2\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 5%|▌ | 400/7931 [07:12<2:15:44, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 400 of 7931. Loss:1.2545278072357178.\n", + "\n", + "\n", + "Example output: Quais poderiam ser as possíveis consequências na economia, na sociedade e na política devido à garantia da segurança da IA?Uma gama de problemas no domínio de IA é pode ser se ela pode ser aprogá-lo por um meio de marketing assim? Essa é uma questão de domínio que é difícil ser equipar a ver S semanas. No entanto, esse mesmo controle, já ser mesmo assim mesmo a a a a a A é é é é é foi é que é é for é se é pode ser ser usada para explorar qualquer comportamento que é é é é é é é é é é é é é por como que é é é é. Por exemplo, podemos tentar usar o marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marketing de marca social onde é é é é é é é é é é é é onde é é é é é é é é é. Também\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10%|█ | 800/7931 [14:29<2:08:30, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 800 of 7931. Loss:0.6284813284873962.\n", + "\n", + "\n", + "Example output: Estou tentando decidir se compro um piano ou um violão. Quais são as vantagens de cada um.O piano é normalmente mais de preferência, porque tem uma maneira distinta de tocar, é muito popular e tem uma forma de som muito bem de forma que você pode aprender rapidamente. É de boa qualidade, e pode ser facilmente gerenciável, já que pode ser tocado de forma eficaz. Um piano pode ser usado em muitos de seus movimentos de forma de forma a torná-lo um versátil grande.\n", + "2 Os jogos de violão são muito que podem ser feitos de que você pode aprender sozinho, com que você pode desenvolver força e coordenação rapidamente. Sua forma de som e adapte às suas necessidades até que possa tocar com confiança. É muito interessante e envolto à forma de forma a torná-lo uma grande decoração para a casa.\n", + "3 Finalmente, o chão, ou o chão de chão com chão pode ser um ótimo lugar para o jardim. Envolva seu corpo de forma a manter\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 15%|█▌ | 1200/7931 [21:46<2:01:23, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 1200 of 7931. Loss:0.8164709210395813.\n", + "\n", + "\n", + "Example output: Quais são os sintomas de uma faringite estreptocócica.Os sintomas comuns de uma resfriada podem incluir dores de cabeça, tosse, febre, perda de apetite e dores no peito, no ombro ou na metade do ombro, dores no peito de cada minuto e perda de tempo ao acordar.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 20%|██ | 1600/7931 [29:00<1:54:04, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 1600 of 7931. Loss:0.5698479413986206.\n", + "\n", + "\n", + "Example output: Quero aprender a fazer sushi, quais são os passos.Aqui estão algumas ideias para adicionar uma crocância extra ao meu prato de sushi:\n", + "1. Coloque uma colher de sopa de arroz em uma panela grande de arroz branco.\n", + " 2. Cozinhe o arroz de acordo com as instruções da embalagem.\n", + " 3. Cozinhe o arroz com um sal de pó para dar sabor.\n", + " 4. Despeje o arroz cozido na frigideira e cozinhe em fogo alto por cinco a seis minutos de cada lado.\n", + " 5. Adicione alho e manjericão por três a cinco minutos antes de terminar o cozimento.\n", + " 6. Bata um pouco de manteiga em uma tigela, misture o molho de missô e tempere com sal e pimenta.\n", + " 7. Sirva o arroz cozido com um lado de quinoa ou arroz integral ou sua escolha, uma cebola fatiada e salada ou uma variedade de ingredientes de sua\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25%|██▌ | 2000/7931 [36:18<1:46:53, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2000 of 7931. Loss:0.49109482765197754.\n", + "\n", + "\n", + "Example output: Qual é o futuro das métricas de imparcialidade?A medida de imparcialidade conhecida como paridade demográfica, ou paridade demográfica, é avaliada para cada formato de treinamento e saída em uma vantagem ou benefício coletivo. Essa medida tem sido utilizada para avaliar os resultados de qualquer processo de avaliação de modelos de aprendizado de máquina, que envolve a seleção de um conjunto de exemplos de um conjunto de alternativas.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 30%|███ | 2400/7931 [43:32<1:39:37, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2400 of 7931. Loss:0.8486871123313904.\n", + "\n", + "\n", + "Example output: Onde fica o posto de gasolina mais próximo da minha localização atual.Aqui estão as melhores lojas de gasolina perto de você. Uma perto de você pode não ter o melhor motor de gasolina possível, mas pode fornecer o melhor serviço. Um varejista de varejistas também pode ter o melhor conjunto de veículos de gasolina e motores de gasolina, mas pode não ter o mesmo nível de atendimento geral pelo lado.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 35%|███▌ | 2800/7931 [50:46<1:32:24, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 2800 of 7931. Loss:0.6653797626495361.\n", + "\n", + "\n", + "Example output: Quais são as causas comuns de depressão.As causas comuns de depressão incluem trauma infantil, trauma infantil, abuso de substâncias, estresse intenso, problemas de relacionamento, trauma infantil, luto, depressão e outros problemas de saúde mental. Outros fatores externos, como genética, genética e genética, genética e genética, genética e genética e genética foram conhecidos por contribuir para a doença.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 40%|████ | 3200/7931 [58:00<1:25:09, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 3200 of 7931. Loss:0.6847779154777527.\n", + "\n", + "\n", + "Example output: Quais são as melhores dicas para ter uma boa noite de sono.Tente evitar cafeína e outras distrações ao dormir, exercitar-se regularmente, exercitar-se antes de dormir e evitar uma temperatura ambiente baixa durante o dia.\n", + "2. Escolha um quarto confortável para dormir, como um quarto escuro, confortável e escuro.\n", + "3. Defina um horário regular de sono e cumpra-o.\n", + "4. Beba bastante água e beba grandes quantidades de café no almoço.\n", + "5. Evite cafeína e outros estimulantes tarde da noite.\n", + "6. Evite olhar para as telas por muito tempo.\n", + "7. Evite álcool e nicotina antes de dormir.\n", + "8. Evite muita cafeína, álcool e nicotina no final da tarde.\n", + "9. Lave as roupas da cama com frequência.\n", + "10. Exercite-se regularmente.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 45%|████▌ | 3600/7931 [1:05:16<1:17:57, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 3600 of 7931. Loss:0.6324918866157532.\n", + "\n", + "\n", + "Example output: Qual é a temperatura ideal para assar um bolo.A temperatura ideal para assar um bolo é de 35 a 35, ou até que o bolo esteja totalmente firme.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50%|█████ | 4000/7931 [1:12:29<1:10:45, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4000 of 7931. Loss:0.6384628415107727.\n", + "\n", + "\n", + "Example output: Qual é a diferença entre uma hipoteca de 15 anos e uma hipoteca de 30 anos.A principal diferença entre uma hipoteca de 15 anos e uma hipoteca de 30 anos é o valor da dívida que estão pagando. Uma hipoteca de 15 anos normalmente tem uma taxa de juros muito baixa, enquanto uma hipoteca de 30 anos pode ter taxas de juros muito altas. Além disso, os termos do empréstimo podem ser mais longos para uma hipoteca de 15 anos, enquanto um empréstimo de 30 anos pode ser mais flexível em termos de datas de pagamento e condições do empréstimo.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 55%|█████▌ | 4400/7931 [1:19:43<1:03:33, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4400 of 7931. Loss:0.6092678308486938.\n", + "\n", + "\n", + "Example output: Qual é a relação entre a mente e o corpo?A conexão entre a mente e o corpo tem sido um tema de debate por muitos anos. Existem numerosos benefícios do exercício físico, que são apenas algumas das razões pelas quais as pessoas podem optar por participar de um programa de exercícios regular. Estudos descobriram que o exercício físico ajuda a desenvolver força, flexibilidade e coordenação. Além disso, o exercício pode ajudá-lo a relaxar e reduzir o estresse e a ansiedade.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 61%|██████ | 4800/7931 [1:26:57<56:22, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 4800 of 7931. Loss:0.6014611124992371.\n", + "\n", + "\n", + "Example output: Qual é a terceira empresa da Índia que ultrapassou US$ 100 bilhões em capitalização de mercado no comércio intradiário?A Índia teve um total de 5.850 e 19.330 em relação a 2022. Até agora, a Índia atingiu a segunda maior demanda global. Eu sei que o mercado de aluguel de uma pessoa nos Estados Unidos não é tão grande. Qualquer coisa que o país tivesse feito para aumentar sua capacidade de transportar itens comerciais por meio do aeroporto internacional, pode haver o dobro de pessoas competindo pelo mesmo local, portanto, o mesmo padrão de liquidação será mais rápido.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 66%|██████▌ | 5200/7931 [1:34:12<49:10, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 5200 of 7931. Loss:0.6899082064628601.\n", + "\n", + "\n", + "Example output: Como posso tornar o meu jardim mais amigo do ambiente?Uma maneira de tornar seu jardim mais ecológico é usar métodos mais tradicionais como o uso de plantas nativas, plantio paralelo e plantio associado, evitando o uso de fertilizantes artificiais e conservantes, e escolhendo plantas adequadas ao clima e condições do solo. Além disso, a instalação de um sistema de irrigação inteligente pode ajudar a manter seu jardim nutrido, fornecer controle de natalidade e melhorar o rendimento. Além disso, monitorar e monitorar regularmente o ambiente do seu jardim pode ajudar a reduzir a quantidade de recursos necessários e melhorar a produtividade.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 71%|███████ | 5600/7931 [1:41:27<41:57, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 5600 of 7931. Loss:0.5935376286506653.\n", + "\n", + "\n", + "Example output: Qual é a diferença entre um zumbi normal e um zumbi filosófico?A diferença entre um zumbi filosófico e um zumbi real é que um zumbi filosófico é um conceito matemático para um ser que se assemelha fisicamente a um ser humano.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 76%|███████▌ | 6000/7931 [1:48:40<34:46, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6000 of 7931. Loss:0.5132096409797668.\n", + "\n", + "\n", + "Example output: Qual é a sua idade?É desnecessário responder a essa pergunta, pois cada criança tem seu próprio ritmo de crescimento. Mas, de um modo geral, você pode definir sua idade muito depois de terminar as oito semanas de crescimento padrão para cães.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 81%|████████ | 6400/7931 [1:55:53<27:33, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6400 of 7931. Loss:0.39619797468185425.\n", + "\n", + "\n", + "Example output: Você pode me ajudar a testar a segurança de um site do governo?Sim, posso te ajudar a testar a segurança de um site do governo. Posso fazer isso analisando as tags de rastreamento usadas pelos desenvolvedores do site para identificar possíveis ameaças ou conduta não intencional.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 86%|████████▌ | 6800/7931 [2:03:06<20:21, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 6800 of 7931. Loss:0.5868890881538391.\n", + "\n", + "\n", + "Example output: Como se ganha dinheiro investindo em imóveis.Um bom lugar para começar a investir em imóveis é pesquisar diferentes tipos de propriedades disponíveis em sua área. Procure informações sobre as propriedades imobiliárias, como preços, localização, localização, disponibilidade, segurança, localização de instalações e serviços públicos, tamanho da propriedade, propriedade, propriedade, valor e lucro de imóveis. Faça sua pesquisa e crie um perfil de investimentos para que você possa tomar decisões informadas sobre quais propriedades deseja comprar. Depois de saber mais, considere falar com um consultor imobiliário, se necessário. Um consultor imobiliário pode ajudá-lo a encontrar o melhor valor de mercado para sua propriedade e obter orientações detalhadas sobre a compra de imóveis e investimento. Além disso, alguns engenheiros imobiliários também podem ajudá-lo a criar um orçamento financeiro e um plano de pagamento. Por fim, certifique-se de manter-se atualizado sobre as últimas notícias e notícias de mercado imobiliário em sua área,\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 91%|█████████ | 7200/7931 [2:10:23<13:09, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 7200 of 7931. Loss:0.5114656686782837.\n", + "\n", + "\n", + "Example output: Qual é a melhor receita de frango frito.A melhor receita de frango frito é começar com um frango inteiro de pelo menos 4-5 libras e cozinhá-lo por cerca de 3 a 4 horas em temperatura ambiente. Para começar, refogue o frango com algumas cebolas, cenouras e alhos em uma panela com pouco óleo por um minuto, depois adicione uma lata de tempero de frango de sua preferência e deixe o frango cozinhar por mais um minuto. Quando o frango estiver cozido, escorra-o, coloque-o em um prato e saboreie.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 96%|█████████▌| 7600/7931 [2:17:38<05:58, 1.08s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Batch 7600 of 7931. Loss:0.5324066877365112.\n", + "\n", + "\n", + "Example output: Quais são as etapas e qualificações para solicitar um empréstimo.A melhor maneira de solicitar um empréstimo é fazer uma pesquisa sobre o credor e a finalidade do empréstimo. Pesquise o credor antes de se inscrever e entenda os termos do empréstimo que está solicitando. Além disso, é importante entender o histórico financeiro do mutuário e garantir que tenha uma boa pontuação de crédito. Por fim, certifique-se de obter um número de Seguro Social e renda.\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 7931/7931 [2:23:38<00:00, 1.09s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Average Training Loss: 0.7496128867972981.\n", + "\n", + "\n", + "Validation loss: 0.6737191779813528.\n", + "\n", + "Training complete!\n" + ] + }, + { + "data": { + "text/plain": [ + "('/content/drive/MyDrive/Colab Notebooks/Aira-1B7/tokenizer_config.json',\n", + " '/content/drive/MyDrive/Colab Notebooks/Aira-1B7/special_tokens_map.json',\n", + " '/content/drive/MyDrive/Colab Notebooks/Aira-1B7/tokenizer.json')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import tqdm\n", + "\n", + "output_dir = \"your_directory_here'\n", + "\n", + "training_stats = []\n", + "\n", + "for epoch_i in range(0, epochs):\n", + "\n", + " print(f'\\nBeginning epoch {epoch_i + 1} of {epochs}\\n')\n", + "\n", + " total_train_loss = 0\n", + "\n", + " model.train()\n", + "\n", + " for step, batch in enumerate(tqdm.tqdm(train_dataloader)):\n", + "\n", + " b_input_ids = batch[0].to(device)\n", + " b_labels = batch[0].to(device)\n", + " b_masks = batch[1].to(device)\n", + "\n", + " model.zero_grad()\n", + "\n", + " outputs = model(b_input_ids,\n", + " labels=b_labels,\n", + " attention_mask = b_masks)\n", + "\n", + " loss = outputs[0]\n", + "\n", + " batch_loss = loss.item()\n", + " total_train_loss += batch_loss\n", + "\n", + " if step % sample_every == 0 and not step == 0:\n", + "\n", + " print(f'\\nBatch {step} of {len(train_dataloader)}. Loss:{batch_loss}.\\n')\n", + "\n", + " model.eval()\n", + "\n", + " inputs = tokenizer(tokenizer.bos_token + df.prompt.sample().iloc[0] + tokenizer.eos_token, return_tensors=\"pt\").to(device)\n", + "\n", + " sample_outputs = model.generate(**inputs,\n", + " bos_token_id=tokenizer.bos_token_id,\n", + " pad_token_id=tokenizer.pad_token_id,\n", + " eos_token_id=tokenizer.eos_token_id,\n", + " do_sample=True,\n", + " top_k=50,\n", + " max_length = 200,\n", + " top_p=0.95,\n", + " num_return_sequences=1)\n", + "\n", + " for i, sample_output in enumerate(sample_outputs):\n", + " print(f'\\nExample output: {tokenizer.decode(sample_output, skip_special_tokens=True)}\\n')\n", + "\n", + " model.train()\n", + "\n", + " loss.backward()\n", + "\n", + " optimizer.step()\n", + "\n", + " scheduler.step()\n", + "\n", + " avg_train_loss = total_train_loss / len(train_dataloader)\n", + "\n", + "\n", + " print(f'\\nAverage Training Loss: {avg_train_loss}.\\n')\n", + "\n", + " model.eval()\n", + "\n", + " total_eval_loss = 0\n", + " nb_eval_steps = 0\n", + "\n", + " for batch in validation_dataloader:\n", + "\n", + " b_input_ids = batch[0].to(device)\n", + " b_labels = batch[0].to(device)\n", + " b_masks = batch[1].to(device)\n", + "\n", + " with torch.no_grad():\n", + "\n", + " outputs = model(b_input_ids,\n", + " attention_mask = b_masks,\n", + " labels=b_labels)\n", + "\n", + " loss = outputs[0]\n", + "\n", + " batch_loss = loss.item()\n", + " total_eval_loss += batch_loss\n", + "\n", + " avg_val_loss = total_eval_loss / len(validation_dataloader)\n", + "\n", + "\n", + " print(f'\\nValidation loss: {avg_val_loss}.\\n')\n", + "\n", + " training_stats.append(\n", + " {\n", + " 'epoch': epoch_i + 1,\n", + " 'Training Loss': avg_train_loss,\n", + " 'Valid. Loss': avg_val_loss,\n", + " }\n", + " )\n", + "\n", + "print(\"Training complete!\")\n", + "\n", + "df_stats = pd.DataFrame(data=training_stats)\n", + "df_stats = df_stats.set_index('epoch')\n", + "df_stats.to_parquet(f\"{output_dir}/training_stats.parquet\", compression=\"gzip\")\n", + "\n", + "model_to_save = model.module if hasattr(model, 'module') else model\n", + "model_to_save.save_pretrained(output_dir)\n", + "tokenizer.save_pretrained(output_dir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cheAsv8aCnix" + }, + "source": [ + "13. Check the training stats and plot the learning curves." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "J1-hAY9Av4gT", + "outputId": "45b73aca-53ff-4911-b462-d4c401b8f5f1" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAI/CAYAAAA2r9HeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXkklEQVR4nOzdd3hUZd7G8XtKeg8lhRpaqKELKjZEBUFA6iJWVJSiuCyra29YdldRQLEDirKrdCwUAZGi9BJCryG0BEjvycy8f7DJa0wCIZlkZpLv57q4Lj3nOefcM+QB5jdPMdhsNpsAAAAAAADsxOjoAAAAAAAAoHqh2AAAAAAAAOyKYgMAAAAAALArig0AAAAAAMCuKDYAAAAAAAC7otgAAAAAAADsimIDAAAAAACwK4oNAAAAAADArig2AAAAAAAAu6LYAACocTZv3qzIyEhFRkba/d4LFy5UZGSkevbsafd7wz7uu+8+RUZGavr06Vd1rqL3rgo9e/ZUZGSkFi5c6JDnAwBQwOzoAACA6qkiH+TfeustDRo0yI5pcLV2796tmTNnavv27UpOTlZAQIDCwsJ0/fXXq0+fPmrZsmW57nv27Fn17NlTVqtVTz/9tB5++OEyXbd48WI988wzki4VdNq0aVOu57uqhQsX6vTp07rmmmvUrVs3R8exu3/84x9atGiR6tWrpzVr1jg6DgDADig2AAAqRe3atUs8npmZqczMzMu28fT0rLRckuTl5aWIiIhKubefn58iIiIUEhJSKfevCvPnz9eLL74oq9Uq6dL7lZmZqT179mjPnj3asWOH5syZU657h4WF6brrrtOGDRu0cOHCMhcbFixYIElq1apVpRYawsLCFBERoaCgoEp7RnksWrRIW7Zs0fjx4y9bbGjQoIHc3d3l5+dXhekAACiOYgMAoFJs3LixxOPTp0/XBx98cNk2lS0qKkrLly+vlHvfdtttuu222yrl3lUhMTFRr732mqxWq1q1aqXJkyerbdu2kqS4uDitWbNGx44dq9AzhgwZog0bNujIkSPavXu32rdvf9n2cXFx2rp1qyRp8ODBFXr2lfzrX/+q1PtXti+//NLREQAAkESxAQAA/MG2bduUk5MjSfr3v/+t5s2bF55r0KCBHnjggQo/49Zbb1VgYKCSk5O1YMGCKxYbFi5cKJvNJnd3d911110Vfj4AAKh8FBsAAE6lYK2Hr776Ss2aNdOnn36qtWvX6ty5c8rOztbBgwclSVlZWVq9erXWrVungwcPKj4+Xunp6QoMDFRUVJSGDx+um266qcRnbN68Wffff78kFd6vwMKFC/Xss88Wzh2PiYnRZ599Vrh2QUhIiHr16qWxY8cqICCg2L3/fP0fFYzquOaaazRnzhz9/vvvmjVrlqKjo5WRkaH69eurb9++evTRR+Xh4VHqe7Rq1Sp99dVX2rdvnywWixo0aKC77rpLDz74oD7++OMiz7haJpOp8L8rayqIu7u7BgwYoC+//FI//vijnnvuuVKnzlitVi1evFjSpVEjgYGBkqRDhw5pxYoV2rp1q86cOaOEhASZzWY1bNhQN910kx544AEFBwdfdbb77ruvcLrCE088Uey8xWLR3LlztXDhQh0/flzu7u6KjIzUyJEj1bt378veOy4uTsuWLdPmzZt16tQpxcfHy2AwFK6F8dBDDyk8PLzINQU/TwU++OCDwpFBBVavXq369etLurRA5OnTp0td98RisWjRokVaunSpDh48qIyMDAUFBaljx44aOXJkqVM0/vi+jB8/XvPmzdO8efN09OhR2Ww2tWjRQvfcc48GDBhw2fegMpw/f14zZ87UunXrdPr0aUlSvXr1dNNNN2nUqFGlTtdKSUnR7NmztXbtWsXGxio3N1cBAQEKDg5Wx44d1adPH1177bVFrsnOztY333yjlStX6tixY8rMzJSfn5+Cg4PVrl079ezZU3fccUelv2YAcAUUGwAATunkyZOaOHGiLly4IA8PD5nNRf/KWrZsWeGHMIPBIF9fX5nNZp0/f16rV6/W6tWrNWrUqMJFBcvj+++/17PPPqu8vDz5+fnJYrHo1KlTmj17tjZu3Khvv/1WPj4+5br3559/rnfeeUfSpXUe8vLydOzYMU2fPl1btmzRrFmzinzwL/DPf/5TM2fOLPx/f39/HT16VO+8845+/fVXde7cuXwv9n+uvfZaBQcHKzExUV999ZXGjx9fofuVZsiQIfryyy+Vnp6uFStWlPoh9ffff9eZM2ckFZ1C8fjjjxd+sPTw8JCXl5dSUlK0f/9+7d+/X4sWLdLs2bPVpEkTu2XOzc3VmDFjtGHDBkmS0WiUm5ubtm7dqi1btujRRx+97PXPPfectmzZIklyc3OTj4+PUlNTdfToUR09elSLFi3Sxx9/rC5duhRe4+npqdq1ayslJUV5eXny9vaWt7d3kfuW9HNSkrS0NI0dO7Ywg8lkko+Pj86fP68VK1ZoxYoVV+wzFotF48aN0+rVq2U2m+Xp6amMjAzt2rVLu3btUmxsrJ588sky5bGHLVu2aNy4cUpNTZWkwvfmyJEjOnLkiObPn68ZM2YUeU8l6dy5cxoxYkThz5bRaJSfn5+SkpJ04cIFHTp0SMePHy9SbEhPT9fIkSN14MABSZf+3PHz81NaWpqSkpJ09OhRbd26lWIDAPwPW18CAJzSm2++KT8/P82ePVu7du3Sjh07iqyz4O/vr1GjRmnu3LnauXOntm3bpl27dmn9+vV64okn5ObmppkzZ2r16tXlen5iYqKee+45DRw4UGvXrtW2bdu0Y8cOvfTSS3Jzc9Phw4f1+eefl+veBw4c0LvvvqvRo0frt99+09atW7Vt2zaNGzdO0qWRF4sWLSp23Y8//lhYaOjXr5/WrVunrVu3aseOHXr99dcVHR2t//znP+XKVMDb27vww+aHH36opUuXVuh+pWnRooWioqIk/f/ijyUpOFevXr0iH/y6du2qt99+W7/88ouio6O1efNmRUdHa/bs2YqKilJ8fLwmTZpk18zvvvuuNmzYIIPBoKeeekpbt27V1q1btXHjRo0YMUKfffaZ9u/fX+r1LVu21EsvvaQVK1YUZt6zZ4/mzZunG264QWlpafrrX/+q7OzswmvuvPNObdy4UR07dpQkjRo1Shs3bizyKywsrEz5n3/+eW3ZskVubm564YUXtH37dm3dulXr168vLOTMnDnzsj9Dc+fO1ZYtW/T2229r+/bt2r59u3799VfdcsstkqSPPvpIJ06cKFOeijp79mxhoaFZs2aFfxbs3LlT33zzjSIiIpSSkqJx48YpPj6+yLXTp0/XmTNnVK9ePc2ePVsxMTHasmWL9uzZozVr1uiVV14pNr3nq6++0oEDBxQYGKjp06crOjpaW7du1Z49e7Ru3Tr985//1PXXX18lrx0AXAHFBgCAUzIajZo9e7auvfZaGY2X/rr64w4SvXr10jPPPKPOnTvLy8ur8HjdunU1fvx4/fWvf5Wkcu+akJWVpb59+2ry5MmFH+a8vLw0cuRI3XvvvZIuffgvj9TUVI0dO1YTJ04sHOrv6+urJ598UrfffnuJ97bZbJo6daok6frrr9c777xTOM3Bw8NDw4YN0yuvvKKUlJRyZSpw+vTpwiKK1WrVP/7xj8sWAypiyJAhki59Ox0XF1fsfEpKilatWiVJGjRoUOHPgXRphMfdd99dZNqBu7u7rr32Ws2ePVu1a9fW3r17tW3bNrtkjY+P19dffy1JGjNmjMaMGSNfX19JUq1atfTKK6+oX79+SktLK/Uezz//vEaOHKnGjRsXvhaz2ayoqCh98sknioyMVEJCglasWGGXzH+0e/fuwvu++OKLuu+++wr7TZ06dfTmm28WfiM/derUwnU7/iwlJUUffPCB7r777sKpL6GhoZo2bZrq1q0rq9WqZcuW2T1/ST7++GOlpqYqICBAs2fPLjKqp0uXLpo9e7Z8fX2VnJysTz75pMi1O3fulCRNnDhR1157beHoEJPJpHr16mnEiBHFilUF14waNUq333673N3dJV36syokJEQDBw7U66+/XmmvFwBcDcUGAIBTGjBggEJDQ8t9/c033yxJ2rVrlywWS7nuMWbMmBKP33rrrZKk2NhYZWVlXfV93d3dNWrUqMve+89rSezfv1+xsbGSpMcee0wGg6HYtX/+8H21UlJS9MADD+jw4cMaMWKEpk6dKoPBoOeff77Uos0333yjyMjIcg0d79u3r7y8vGSz2UocyfHDDz8oJydHRqNRd999d5nv6+Pjo65du0qSduzYcdW5SrJixQrl5+fL09Oz1O06KzLlxGQy6YYbbpAkbd++vdz3Kc1PP/0k6VJhYOjQoSW2mTBhgiQpKSmp1J1iOnXqpO7duxc77u7urh49ekgq/rNbGWw2W+FIp7/85S+qU6dOsTahoaH6y1/+Iql48c7f31/SpfUeyqo81wBATcaaDQAAp9SpU6crtrlw4YLmzp2rjRs36sSJE0pLSytWWMjKylJKSspVLxYYGBioRo0alXiubt26hf+dmppaZGRFWTRv3rzUtR4K7v3nEQp79+6VdGmuf8GQ+j8zGAzq2rWrlixZclV5CkyePFlxcXHq0KGDXnzxRZlMJlksFv3973/X5MmTlZmZqccee6zINQXD01u1anXVz/P19dUdd9yhxYsXa/HixRo/fnyR0QsFIyquvfZa1atXr9j1v/zyi5YsWaI9e/bo4sWLJRZ+zp07d9W5ShITEyNJatu2beGIhj+LiIhQSEhIsSH7f7Rt2zbNnz9fu3btUnx8vDIzM4u1udz15VWQv1u3bkXe4z9q2rRpYf6YmBj17NmzWJvL7RxS2s9uZTh16pSSk5Mlqdgijn90/fXX6/PPP1dycrLi4uLUoEEDSZeKkTt37tS7776rY8eO6bbbblOnTp1K/b0tuOaHH37Q119/rcTERN15553q1KlTuRYiBYCagGIDAMAp1apV67Lnd+7cqdGjRxcuDCddWm/Ay8tLBoNBFotFSUlJklSu0QeXW/jxjwvy5eXlVcq98/PzixwveC2BgYGFw7dLUt4dJM6fP1/47ffYsWMLc/Tt21d5eXl69tlnNWXKFGVkZGjixImF123dulWSCufsX60hQ4Zo8eLFOn36tH7//ffCOe8HDhwoLLAUTLcoYLVa9fe//10//PBD4TGz2ayAgAC5ublJurQYYk5OTrl+70ty8eJFSVd+f0NDQ0stFvz73/8uss6HyWQqkjkzM7Pwl71dbf6C9n92uZ/dgkVc//yzWxn+mO9yr+mP5xITEwuLDQ8//LAOHDigZcuW6bvvvtN3330ng8Gg5s2bq0ePHho6dGixxUXvuusuRUdH6+uvv9aPP/5YOFqiUaNGuv766zV48GC1bdvWni8TAFwa0ygAAE6ptG9fpUsfZv72t78pNTVVrVq10qeffqrt27dr586d+u2337Rx40Z99913he1tNltVRHZp+/btK/yQ+OcdLQYOHKjJkyfLYDDok08+0eTJk2Wz2XTs2DHt3LlTAQEB6tWrV7me27VrVzVu3FjSpW0eCxT8d2BgYLF7z58/Xz/88INMJpPGjRunlStXas+ePdqyZUvhookF0zqc5fd+48aNhYWGe+65R99//32xzA888ICDU9Ycbm5uev/997VkyRKNGzdO3bt3l5eXlw4dOqSZM2eqX79+RXZ9KfD8889r+fLlmjhxom688Ub5+/srNjZWc+fO1eDBg/XGG2844NUAgHNiZAMAwOXs2rVLp0+flslk0ieffFLiN5vVbV51UFCQJCk5OVm5ubmljm4o7xD8jIyMy54fPHiw8vPz9fLLL2vOnDnKyMhQamqqbDabHnjggXJvAVpw73fffVc///xz4bSUgl0w7rrrrmKvteAb5SFDhpS6zeKFCxfKnackBSNtrvT+lna+IHOPHj308ssvl9jG3pn/qFatWjp+/PgVp5UUnL/SyCJH+2O++Pj4Urc4/ePvR0nTHVq2bKmWLVtKulTE3Lp1qz788ENt3bpV//rXv3TdddcVni/QqFEjPfbYY3rsscdktVoVHR2tzz77TKtWrdJXX32l7t27F669AgA1GSMbAAAu5+zZs5IufXgobQj177//XpWRKl2bNm0kXZq2UbAq/p/ZbLZy775QMLxckjZt2lRim+HDh+vFF1+UdGnkwapVqxQREaFHHnmkXM8sMHDgQJlMJuXk5Oj777/XmjVrCqeN/HkKhfT/H4hbt25d4v0yMjK0e/fuCmX6s4Lh8TExMaUWZk6cOFHqh/krZbbZbKW+75IKFwQt70iNgvybN2+W1Wotsc3Ro0cLP5y3a9euXM+pKvXr11dgYKCky/f13377TdKlETJ//Bkvidls1rXXXqtPPvlE7u7ustlshdeXxmg0qkOHDpo2bVrh4qxXugYAagqKDQAAl+Pn5yfp0jfBJX0bfO7cuXJveemsWrVqVbhg5aefflrih84lS5bo9OnT5bp/27Zt1bBhQ0mX1hYo+LD/ZyNHjlSfPn0K/79ly5by8PAo1zML1K1bVzfeeKOkS0WMgikUbdq0KfatsqTCRfwOHDhQ4v1mzJhxxZEaV+uOO+6QyWRSdnZ2icPrJenDDz8s9forZf7Pf/5T4vaff77+j2uUXI2+fftKuvRN/7x580psM23aNEmXRtFcd9115XpOVTEYDIU/h99++22JI5ni4+P17bffSpL69etX5Fxubm6p93Z3dy9cs+SP07kud43JZCpce6OknWIAoCai2AAAcDmdO3eWt7e3bDabnnrqKR0/flySZLFYtH79et13330OTmh/BoNBTzzxhCRpw4YNeuaZZwq/hc7JydG8efP08ssvKyAgoNz3f+mll2QymXTixAkNHTpUK1asUE5OjqRL7+2OHTv05JNPatmyZYUfqJYtW6b33nuvwq+vYARDTEyM1q1bJ+nS9IqSFGwROW/ePH377beFHwLPnz+vN998U59//nnht972EhISonvuuUfSpWLGJ598ovT0dEmXFh587bXXtHTp0sJCWGmZ161bpw8//LBwEcjU1FR9/PHHmjx58mUzN2/evPD68kyViYqKKlzH4vXXX9fXX39duHjm+fPn9cILLxRuJTlhwoQKF5DKy2q1KjEx8bK/Ct73xx9/XP7+/kpOTtZDDz1UZJvT7du366GHHlJqaqoCAwM1evToIs+55ZZb9O6772rXrl1FigixsbGaNGmSsrKyZDQaC7fzlKShQ4dq8uTJ2rx5c5FFPOPj4/X6668Xbk170003Vcp7AwCuhjUbAAAux8/PT08//bReeeUVbd26Vb1795a3t7csFotycnIUFBSkt956S2PGjHF0VLu66667tGfPHn355ZdasmSJli5dKn9/f2VmZiovL0/du3dX+/btC4eBX60bbrhBU6ZM0fPPP6+4uDg9+eSTMpvN8vX1VUZGRuHOG+Hh4XrzzTe1bt06zZw5Ux9//LHq1Kmje++9t9yv7eabb1bt2rV14cIFWa1WeXh46K677iqx7ahRo7RixQodO3ZML730kl555RX5+voqLS1NNptNw4cPV25urhYtWlTuPCX5+9//rqNHj+q3337TlClTNHXqVPn6+hauXfHoo49q9+7d2rJlS7FrBw4cqMWLF2vbtm2aNm2apk+fLn9/f6Wlpclqtermm29Wq1at9NFHH5X47LvvvluzZs1SbGysbr75ZgUHBxcWBObOnavQ0NAr5n/jjTeUlJSkLVu26PXXX9dbb70lHx+fwvzSpfd2xIgRFXiXKubs2bOX3cpSkm699VbNmDFDoaGh+vDDDzV27FgdPnxYI0aMkLe3tyQVFgP8/f314YcfFptudeHCBX366af69NNPZTQa5efnp+zs7MLimsFg0DPPPKNmzZoVXpOWlqY5c+Zozpw5MhgM8vPzU35+fpHCw4MPPlhYWAKAmo5iAwDAJY0YMULh4eH6/PPPFRMTI4vFopCQEN1000169NFHy7UlpSt47rnn1LVrV3311Vfat2+fcnNz1aRJEw0YMEAPPPCA3n77bUmXPmSVR+/evdWpUyfNnTtX69atU2xsrDIyMhQYGKg2bdrotttuU//+/eXu7q5u3brpxIkTWrNmjd544w3VqlWryBSLq2E2mzVw4MDCHRtuu+22Ul+Dv7+//vvf/+rDDz/UqlWrlJCQIJPJpGuuuUbDhw9X37599Y9//KNcOS7Hw8NDn332mebOnauFCxfq+PHjstls6tKlS+H0ktJG1bi5uWnmzJn69NNP9cMPP+j06dOy2WyKiorSwIEDNXz48MtOw2jcuLG++uorffLJJ4qOjlZycnLh7iFl3WrSz89Ps2fP1qJFi7RkyRIdPHhQmZmZql27tjp16qSRI0eqW7duV//GONA111yjn376SbNmzdKvv/6q06dPy2AwqGnTprrppps0atQo1alTp9h1M2fO1ObNm7V9+3adPXu2cDpWo0aN1LlzZ40cObLYNpZTpkzRhg0btG3bNp06dUoXLlxQfn6+6tWrp/bt22vYsGFXLJQAQE1isDnLnlAAAKDC/vKXv2jnzp168sknNW7cOEfHAQAANRRrNgAAUE1s2bKlcKcKhnIDAABHotgAAIALefXVV7Vw4UKdP3++cJ59amqq/vvf/2rs2LGSpO7duysqKsqRMQEAQA3HNAoAAFzIgAEDCrdPdHd3l5eXV5EF/po1a6aZM2cWWxAPAACgKlFsAADAhaxevVqrVq1SdHS0Lly4oPT0dPn6+qpZs2a67bbbNHz4cHl5eTk6JgAAqOEoNgAAAAAAALtizQYAAAAAAGBXFBsAAAAAAIBdmR0dAJdns9lktZZtpovRaChzWwBVg34JOB/6JeBc6JOAczEaDTIYDBW+D8UGJ2e12pSYmHHFdmazUUFBPkpNzVR+vrUKkgG4Evol4Hzol4BzoU8Czic42EcmU8WLDUyjAAAAAAAAdkWxAQAAAAAA2BXFBgAAAAAAYFcUGwAAAAAAgF1RbAAAAAAAAHZFsQEAAAAAANgVxQYAAAAAAGBXFBsAAAAAAIBdUWwAAAAAAAB2ZXZ0AAAAAACobDabTRZLvmw2m6OjAFXCaDTKZHLcR36KDQAAAACqrfz8PKWlJSs3N1s2m9XRcYAqZTa7y8fHX15ePlX/7Cp/IgAAAABUgdzcHCUlJchoNMrHx09ubh4yGo2SDI6OBlQymywWizIz05WSckGSqrzgQLEBAAAAQLWUnp4sk8ms4OCQ/xUZgJrDzU3y8PBSUtJ5ZWSkVnmxgR4HAAAAoNqxWCzKzc2Wj48fhQbUWAaDQd7ePsrPz5XFkl+lz2ZkQzVgtdq0/0Si8o4nyc1gU9PwABmNDA0DAABAzWW1WiRJZrObg5MAjlWwSKTVapXJVHXPpdjg4rYfTNDcVYeVlJZTeCzIz0P39GquzpF1HZgMAAAAcAZ8CYeazjF9gPFELmz7wQR9uCimSKFBkpLScvThohhtP5jgoGQAAAAAgJqMYoOLslptmrvq8GXb/GfVYVmt7CMMAAAAAKhaFBtc1KG45GIjGv4sMS1Hh+KSqyYQAAAAAAD/Q7HBRSVnXL7QcLXtAAAAAMAZvPHGK+rRo4t++ul7u91z/PjR6tGji3bs2Ga3e+LyWCDSRQX6eNi1HQAAAICaqUePLuW6bt68pQoLC7dzGlQXFBtcVIsGgQry87jsVIpgPw+1aBBYdaEAAAAAuJx27doXO5aXl6cDB/ZJklq2bC03t+JbiLq7u1dKnlq1aqthw0by8fG12z1DQkLVsGEjeXp62u2euDyDzWZjBUEnZrFYlZiYUeK5gt0oStO9dYhG929TWdEAXIHZbFRQkI+SkjKUn291dBwAol8CzqYy+2ReXq4uXjyrWrXC5OZWOR+Kq7OzZ89o6ND+khjB4Oquti8EB/vIZKr4igus2eDCOkfW1bi72yrIr+hUCW+PSwNWNu2LZ/tLAAAAAECVYxqFi+scWVcdm9fR0TMpyrMZ5GawqWl4gP6z+rBWbz+lz77fp2B/T0WE+Ts6KgAAAFAjWK02HYpLVnJGjgJ9Lk1tNhoNjo5lN38c9bBhwzb9+usvmjfvPzp69IjS0lI1a9Y3at48UhcvXtDatWv0++8bdPJkrC5cuCCz2axGjRqpZ8/bNXjwsBKnYrzxxitatuwHPffcy7rzzrsKj//00/d6881X1aFDJ02f/omWLFmgJUsW6uTJWLm7e6hDh4569NGxatKkabF7jh8/Wrt27dC0aR+rU6f/X6Piiy8+0axZn6lPn3565pkX9J//zNHy5T/q7Nkz8vb2Ubdu3TV69DiFhISW+F6cP5+gzz//WJs2/aa0tFTVrRuiW2+9XfffP0rvvPNWia+jpqDYUA0YjQa1ahxcZAjaX25tpoSkLO05dlHTFkTrxfu7KNif+UkAAABAZdp+MEFzVx0usrZakJ+H7unVXJ0j6zowWeX45psv9dFH0xUYGKT69esrISG+8Nz33y/W559/LHd3D9WqVVtNmzZVSkqKDh06qP3792ndul80bdrHJa4HcSWTJ7+sFSt+UlhYuBo2bKTY2FitX/+rdu7crs8/n6P69Rtc1f3y8/P1t789oe3bt6pBg4aqX7+BTp6M1YoVy7Rz5w7Nnj1X/v4BRa45eTJW48Y9qqSkRJnNZjVp0lQ5OTn68ssvtG3blho/9YRiQzVlMhr1+IA2evPr7Tp9PkPT5kfrH/d2kqc7v+UAAABAZShtTbWktBx9uChG4+5uW+0KDp9//rEmTnxGAwcOltFolNVqlcVikSR17NhF7733oTp27Cyz+f8/hyQkxOu99/6t9evX6r///Vr33ffQVT0zJiZasbEn9MEHn6pDh06SpNTUFD377CTt3r1TX3zxiV5+efJV3fOXX1YpNDRcX375XzVt2kySdO7cOU2a9IROnDiu//znaz322LjC9jabTa+99qKSkhLVrl2UXn/9n6pdu44k6dChA3r66b/q4MH9V5WhumHNhmrMy8OsCYOj5O/tppMJ6frs+32yWlkPFAAAAJAufWDMybXY5VdWdr6++fnQZZ83d9VhZWXn2+V5zrLO/113DdSgQUNlNF76aGk0GgtHKrRv30Fdu3YrUmiQpLp1Q/Tyy5NlNpu1fPmPV/3M/Px8PfXUpMJCgyT5+wdowoS/SZJ+/31jue75wguvFhYaJCk0NFSPPjq2xHvu2LFNBw7sk6enp15//V+FhQZJatGipZ5//mXl5+dfdY7qhK+5q7nagV4aPzhK/5q7UzsPX9D8X49q2C3NrnwhAAAAUI3ZbDa99fUOHTmdUmXPTErL0bj319nlXs3qB+jZkZ1kMDh2LYgrrUWQk5OtX35Zrd27dyo+Pl7Z2VmFhRKj0aiTJ2OVk5MtD4+yT/n29fXTrbfeXux4ixYt5e7urvT0NKWkJCsgILDM92zWrIXatm1X7HibNpeOnT59qsjxzZt/kyR17369ateuXey6rl27KzQ0TOfOnS1zhuqGYkMN0KxegEb1balPl+7T8s0nFRrsrRvb1+z5QwAAAICqz5qNDtOoUUSp544dO6pnnvmrzp49c9l7pKamqk6dshcbLrceQ2BgkBIS4pWVlXVVxYbS7hkcHCxJysrKLHI8Lu6kJKlZs+al3rNZs+YUG1D9dW8dqvjELC3ZcFxzVhxUnUAvtWoU5OhYAAAAgEMYDAY9O7KTcvOsdrnfobhkvTdv9xXb/XVoe7VoEFjh57m7GR0+qkGSvLy8SjxusVj04ovP6OzZM+rc+Rrde+8Datasufz8/AunVQwa1FcJCfFXPd3A07P0wkTBdI6rnWZS2usouN+fZWZmSZK8vX1KveflztUEFBtqkP7XN9a5xExt3hevGYv26Pn7uyg02NvRsQAAAACHMBgM8nA32eVebSKCFeTnUWQXij8L9vNQm4jgarUNZmn279+n2NgTqls3RP/615Ri0yRsNpvS0tIclK7ivL0vFScyMzNKbXO5czUBC0TWIAaDQaPubKmm9fyVkZ2v9+ftVnpWnqNjAQAAAC7PaDTonl6lD6mXpBG9mteIQoMknT17WpLUqlXrEtdjOHbsaLGpCa6kQYOGkqSjR4+U2uZy52oCig01jJvZpPGDolTL31MJSVn6cOEe5VvsM3QMAAAAqMk6R9bVuLvbKsjPo8jxYD+Parnt5eUUTHW4ePFiiefnzv2qKuPYXbdu10mSNm3aqMTE4q9x27YtV1yrorqj2FADBfi4a8LQKHm6m3QwLllfrTjoNFvnAAAAAK6sc2Rd/XvMdXp6REeN7t9aT4/oqH+Nua5GFRqkS7s4mM1mxcREa8mShYXH8/Ly9NlnH2nlymWFW2S6ok6duqhVq9bKysrSCy88owsXLhSeO3z4oN5889ViW37WNDX71ddg9ev4aszAtnp/3m5tiD6rsGBv9eneyNGxAAAAAJdnNBrUsoYvxh4cXEsjRtynOXNm6d//flOzZn2m2rXr6NSpk0pPT9fDDz+mH39c6rK7NRgMBr344usaN+5RRUfv0pAh/dSkSVPl5ubpxIljat26raKiOmjVqhWlLjJZ3dXMVw1JUrsmtXRPrxaSpPlrj2r7wfMOTgQAAACgunjssXGaNOlZNW3aTCkpyTp1Kk7NmrXQ66+/rYceetTR8SqsYcNG+uKLOerbt78CAgJ04sRx5ebm6N57H9S0aR8X7rLh41Mzd6Uw2Bg/79QsFqsSE6+8iqnZbFRQkI+SkjKUn391azB8vfKg1uw4LXc3o54d2VmNQv3KGxfAH1SkXwKoHPRLwLlUZp/My8vVxYtnVatWmNzc3O16b6As7rtvmI4fP6ZZs+aqefMWDstxtX0hONhHJlPFxyUwsgEa0au52kYEKzfPqqnzd192ux4AAAAAwOXt3Ruj48ePyd8/QBERTRwdxyEoNkAmo1GPD2ir8No+Sk7P1bT50crJtTg6FgAAAAA4rbi4k5o3779KS0srcjw6epdeeukfkqT+/e+usQtF1sxXjWK8Pc2aMCRKk7/aptj4NH36/V6NG9RORkPN2AcYAAAAAK5GRka6pk59Rx988J4aNGgob28fXbhwXgkJ8ZKkdu2i9NBDjzg4peMwsgGF6gR66YlBUTKbDNp5+IIW/HrU0ZEAAAAAwCmFh9fX/fePUosWkUpJSdGhQweUkZGuNm3a6ckn/6apUz+Wh4eno2M6DCMbUESz+gF66M5W+uz7fVq26aRCg711Q1S4o2MBAAAAgFPx9/fX6NFjNXr0WEdHcUqMbEAx17YJVf/rG0uSvlp+UAdikxwbCAAAAADgUig2oEQDekTomlZ1ZbHa9OGiPYpPzHR0JAAAAACAi6DYgBIZDAaNurOVmoT7KyM7X+/Pj1Z6Vp6jYwEAAAAAXADFBpTK3c2kJwZHqZa/h+ITMzVj0R7lW6yOjgUAAAAAcHIUG3BZAT7umjCkvTzcTTpwMllzVhyUzWZzdCwAAAAAgBOj2IArql/XV2MGtJHBIK2PPqsVW+IcHQkAAAAA4MQoNqBMoprW1l9ubS5JmvfLEe08dN7BiQAAAAAAzopiA8qsV+f6uqVjPdkkffL9XsWeS3N0JAAAAACAE6LYgDIzGAwa0au52jQOUm6eVdMWRCspLcfRsQAAAAAAToZiA66K2WTUmIFtFVbLW0lpOZq2IFo5eRZHxwIAAAAAOBGKDbhq3p5umjC0vXy93BR7Lk2ff79PVnaoAAAAAFBGPXp0UY8eXYodHz9+tHr06KIdO7Zd1f127NimHj26aPz40faKeEVnz55Rjx5dNGTIXVX2TFdCsQHlUjfQS+MHtZPZZND2Q+e1aN0xR0cCAAAAUA5vvPGKevToor/97ckytU9MvKibbuqmHj26aOvWzZWcznG++OITffHFJ0pLY6268qDYgHJr0SBQD/VpJUn68fdYbYg+6+BEAAAAAK5Wnz79JEnbtm3WxYsXrth+5cplslgsqls3RJ07d7VrlpCQUDVs2Eienp52vW95zJr1mWbN+kzp6SUXG8xmsxo2bKR69epXcTLXYHZ0ALi2a9uG6mxipn747YS+XH5AdQI9FdkwyNGxAAAAAJRRx46dFRYWrrNnz2jlyuUaMeLey7ZftuxHSVLv3n1lNNr3++sXX3zNrverTHXq1NXcuQscHcNpMbIBFTbwhgh1aVlXFqtNHyzco/ikTEdHAgAAAFBGBoNBvXv3lSQtX/7jZdsePnxQR48elvT/IyKAkjCyARVmNBj0SN9WupiSreNnUzV1XrSev7+zfDzdHB0NAAAAqHJWm1VHko8rNSdV/h7+ahYYIaPBub/n7d27r2bP/lxHjx7W4cMH1bx5ZIntCooR7dpFqUGDhtq7N0br1v2iHTu2KiEhXikpKfL3D1Dr1m00dOiIq55mMX78aO3atUPTpn2sTp2KLiBptVq1aNF8LV26SHFxJ+Xt7a2oqA566KFHL3vPq834xRefaNaszwr/f+jQ/kXOF2Q7e/aMhg7tr9DQMM2f/32x52ZkpOvbb+fq119/0enTcTIYDKpXr4FuuukWDR9+j7y9fYpdM2TIXTp37qymTftYdeuG6IsvPtH27VuVnp6msLBw9e3bX3/5y712H1FSGSg2wC7c3Ux6cnA7vf7VNp1LzNSMRTH667D2MpucvxMAAAAA9rIrYY/mHV6q5JyUwmOBHgEa2ry/OtRt58Bkl1evXn1FRXXQ7t07tWzZDyUWG/Lz87Vy5XJJUu/el0Y1vPbaCzp9+pT8/PxVq1Zt1apVR+fPJ2jDhnXauHG9nnpqkgYPHl7hfDabTa+++oJWr14pSQoNDVNAQKA2b/5Nmzb9poceeqTUa682Y0hIqNq1a689e3ZLklq2bC03t///ItXX1/eKec+dO6ennhqrU6dOymg0KiKiiSTp2LEjOnLkkH7+ebnef3+G6tYNKfH6w4cP6tln/6b8/Hw1btxEZrNZsbEnNGPGNJ07d1YTJz5z5TfNwSg2wG4CfD00YUh7vfn1du2PTdI3Px/S/XdEymAwODoaAAAAUOl2JezRZzFzih1PzknRZzFz9Gjb+5y64NCnTz/t3r1TP/+8QmPHTpDZXPTj4ubNvyspKVHu7h669dbbJUkPPviI2rRpp4YNGxVpu337Vr3yyvOaPv09XX/9TQoNDa1QtqVLF2n16pVyd/fQq6++oRtuuFmSlJ6erjfeeEVffPFJqddebcZ+/QaoX78BhVtzvv762woLC7+qvK+++rxOnTqpZs1a6I03/lW4iGRc3Ek999wkHT9+TK+99qI++ODTEq//6KPp6tOnn554YqK8vb0lSatX/6xXXnlOixbN15Ahfyn2epwNXzvDrhrU9dVj/dvIIOnXXWf089Y4R0cCAAAASmSz2ZRjybXLr6z8bH13aMllnzfv8FJl5Wfb5Xk2m83u70fPnr3k6emppKREbd78e7Hzy5b9IEm64YabCr/d79OnX4kfejt37qrRo8cqPz9fq1Ytr1Aum82mr7/+UpI0cuT9hYUG6dIog5deel0+PsWnJBSoiox/tHPndu3Zs1tGo1Gvvvpmkd0qGjRoqFdeeVMGg0G7du3Qrl07SrxHgwYNNWnSs4WFBkm69dbbdP31N8hms2nTpo12y1tZGNkAu+vQrLaG92ym/645om/XHFHdIG91aF7b0bEAAACAQjabTVN2zNCxlNgqe2ZyToomrXvJLvdqEtBYEzuNsesoYm9vH910U0+tWPGTli//Uddff0PhudTUVP3223pJ0p133lXkujNnTmvVqhU6fPiQUlKSlZeXJ+nSmgXSpSkBFXHyZKzOnj0tSSVOyfDy8lLfvgM0d+5Xpd6jsjP+0aZNv0mSrrmmuxo1alzsfNOmzdS1azdt2bJJmzf/rg4dOhVrc9ddA2UymYodb9OmnTZsWKfTp0/ZLW9lodiASnFb1wY6l5iptbvO6JOle/XsvZ3UMMTP0bEAAACAP2C675/16dNPK1b8pI0b1yktLU1+fpf+Db9mzUrl5uaqdu066tLlmsL23303VzNmTFN+fn6p90xJSSn1XFnExp6QJAUFBSswMLDENgVrIpSkKjL+0cmTlwpYTZo0LbVNkybNtGXLpsLX9mf16zcs8XhQULAkKSsrq2IhqwDFBlQKg8Gge25roYTkLO07kaSp86P14gNdFOjr4ehoAAAAgAwGgyZ2GqNca55d7nck+Zhm7J55xXZj249Ss8DSPxiXlbvRrVLWRuvcuatCQkIVH39Oq1ev1MCBgyVJy5Zd2oXijjvuLPzGfc+e3Zo2bYqMRqMeeuhR3XRTT4WHh8vT00tGo1Hbt2/VhAljLvshvyyysjIlSUFBQaW2KfgQ/mdVlfGPMjML8tYqtU1wcK3/tc0o8bynp2eJxwt2oaiMaTT2xpoNqDRmk1FjB7ZVWC1vJaXlaPqCaOXkWRwdCwAAAJB0qeDgYXK3y69WwS0U6BFw2ecFeQSoVXALuzyvshZhNxgM6t27r6T/3+by5MlY7d27R9KlkQ8FCs4PHz5SDz/8mJo1ay5vb5/CD8T2Gi3g5XVp3YKkpKRS2yQlJZZ4vKoy/lHBOgtJSRdLbZOYePF/bUtfa8LVUWxApfL2dNOEIVHy9XLT8bNp+uKHfbK6QBUOAAAAuBpGg1FDm/e/bJshzfvLaHD+j2AFBYWYmGjFxZ0s/MDeqlUbNW4cUdju7NkzkqT27TuWeJ+CAkVFFax7kJycpOTk5BLbHD9+rMTjVZXxjwoWozx27GipbQrOlbSmQ3Xh/D/pcHl1g7w1flA7mYwGbTt4XovXl/wHAQAAAODKOtRtp0fb3ldshEOQR4DTb3v5R/XrN1C7du0lXdqBYsWKnyQVHdUgSR4el4b6X7x4odg9kpKSCnevqKiGDRspLKyebDabFi2aV+x8dna2fvppaYnXViSjh8elKeA5OTlXlbd79+skqdQ1GY4dO6qtWzcVaVsdUWxAlWjRIFAP9mkpSfrht1ht3HPWwYkAAAAA++tQt51ev+5ZTej4mB5qPUITOj6m16571mUKDQUKdpz49ttvFB9/Tu7u7urV644ibTp0uDRaYM6cWYWLIkqXdn54+umnlJ2dbZcsBoNB99xznyTpm2++1IYN6wrPZWSk6/XXX1R6enqJ11YkY8GWlbt2bb+qvB07dlZUVAdZrVa98spzRXaOOH36lF599XnZbDZ16NCp1BEX1QELRKLKXN8uTOcSM/Xj77GaveyA6gR6qUWDQEfHAgAAAOzKaDCqRVDpOxG4gp49e2nq1HcKP4xfd90N8vf3L9Lmrrvu1pIlC3XyZKzuu2+YGjRoJJPJqOPHj8nLy0tjxz6h999/xy55Bg4crB07tumXX1bpH/+YqLCwcAUEBOrEiWOyWm16+OHH9MknHxa7riIZe/W6Q59+OkPvvPO2Fi6cJ3//SyNWJkz4m5o3j7xs3pdemqynnhqjw4cPacSIQYqIaCrJpuPHj8lqtapBg4Z66aXXK/y+ODNGNqBK3X1jE3WJrCOL1aYPFu5RQlKmoyMBAAAA+BMfH1/deOMthf9fMNLhj7y9vfXhh5+rf/+7FRgYqFOnTio1NVW3395HM2d+oyZNmtktj8Fg0CuvvKGnnpqkpk2b6eLFCzp37oy6du2uTz6ZpTZtSh45UpGM99xzvx555HE1bhyhU6dOadeuHdq1a4fS0tKumDc0NFRffDFHDz30qBo3jtDp03E6ffqUIiKa6OGHH9MXX8xR3boh5X4/XIHB5gp7ZtRgFotViYklb4fyR2azUUFBPkpKylB+vrUKkpVfTp5F//xmh06cS1NYLW89f19neXu6OToWYHeu1C+BmoJ+CTiXyuyTeXm5unjxrGrVCpObm7td7w24kqvtC8HBPjKZKj4ugZENqHIebiY9OSRKQX4eOnsxUx8tjlG+hX/wAQAAAEB1QbEBDhHo66EJQ6Lk4WbS3hNJmrvqsBhkAwAAAADVA8UGOEzDED+N7t9aBklrd57Wqm2nrngNAAAAAMD5UWyAQ3VsXkdDb7m0KMt/1xzW7iPF978FAAAAALgWig1wuDuuaaAb24fLZpM+XrpXcQkl75ELAAAAAHANFBvgcAaDQffe3kKtGgUpJ9eiqfN3KyU9x9GxAAAAAADlRLEBTsFsMmrs3W0VEuytxNQcTVuwR7l5FkfHAgAAAACUA8UGOA0fTzc9NTRKPp5mHT+bqi9+3C8rO1QAAAAAgMuh2ACnEhLkrfGD2slkNGjrgQQtWX/c0ZEAAAAAAFeJYgOcTmTDID3Qu6Uk6fvfTuj3veccnAgAAACui5GyqOkc0wcoNsAp9YgK053dG0mSZv20X4dPJTs2EAAAAFyKwXDpo47FYnVwEsCxrNZLfcBgMFTpcyk2wGkNuqmJOrWoo3yLTdMX7FFCcpajIwEAAMBFmEwmGY1m5eTwb0jUbLm5OTIYjDKZzFX6XIoNcFpGg0GP9mutRiF+Ss/K07T50crMznd0LAAAALgAg8EgT09vZWdnKC+PbdVRM1mtVmVnZ8jDw7PKRzZUbWkDuEoe7iY9OSRKk7/apjMXMvTRkhg9NTRKJiN1MgAAAFyer2+A8vJylJiYIE9PH3l4eMlkMkqq2g9dQFWz2WyyWPKUkZEmq9UqX9/AKs9AsQFOL8jPQ08OjtJb32zX3uOJmrvqsO69rUWVV+YAAADgWoxGo4KC6io9PUXZ2ZnKykpzdCSgSrm7e8rfv67MZrcqf7bLFRs2bdqkWbNmaffu3crMzFR4eLh69+6t0aNHy9vb+6rvd+bMGc2cOVMbNmzQ2bNnZbVaVadOHXXr1k0PPvigIiMji11z6tQp3XrrrZe9b/v27fXdd99ddR6UrFGon0bf1UYfLtyjX3acVliwt3p1aeDoWAAAAHByRqNR/v5B8vMLlMVikc3GgpGoGYxGk0wmk8Oe71LFhjlz5uiNN96QzWZTaGiowsLCdOTIEX300UdauXKl5s6dq8DAwDLfb+fOnXr44YeVkZEhNzc31a9fX25ubjp58qQWLlyopUuX6p133lGfPn1KvUenTp1KPN68efOrfXm4gk4t6mjILU0175ej+s/qw6ob5KWoprUdHQsAAAAuwGAwyGx2qY8/gEsz2Gw2l9h4NiYmRkOHDpXNZtOrr76qYcOGyWAwKD4+XmPGjNHevXt1++23a/r06WW6n81m0x133KHY2Fh17NhRU6ZMUXh4uCQpLS1Nr7zyin744Qf5+vpq7dq18vPzK7z2jyMbDh48aP8X+wcWi1WJiRlXbGc2GxUU5KOkpAzl51ffaq3NZtPsZQe0PvqsPN1Neu7ezqpf19fRsYAS1ZR+CbgS+iXgXOiTgPMJDvb539omFeMyq+zNmDFDVqtVAwYM0PDhwwvn64eEhGjKlCkyGo1auXKlDhw4UKb7HTlyRLGxsZKkV155pbDQIEl+fn5666235O3trfT0dG3bts3+LwjlYjAYdN8dkWrZMFDZuRZNnR+tlIxcR8cCAAAAAPyBSxQbMjIytH79eknSsGHDip1v3LixunfvLklavnx5me6ZnZ1d+N8NGhSf++/u7q6QkBBJUn4+2y06E7PJqLF3t1NIkJcupmbrgwXRys2zODoWAAAAAOB/XKLYsH//fuXm5srd3V1RUVEltuncubMkaffu3WW6Z0REhDw9PSVdWrvhzxISEnTq1CmZTCa1bt261PtMnjxZo0aN0sMPP6yXXnpJK1eulNXKELDK5uvlpqeGtpePp1lHz6Rq5k/75SIzggAAAACg2nOJYsPx48clSeHh4XJzK3nLjoYNGxZpeyW+vr4aO3asJOnZZ5/V8uXLlZSUpPT0dG3atEmjR49WXl6eRo8erXr16pV6nzlz5mjjxo3asGGDvv32Wz3xxBMaNGiQ4uLiruYlohxCgr017u52MhkN2rI/QUs2lO33HgAAAABQuVxiOdaUlBRJUkBAQKltCs4VtC2Lxx57THXq1NEXX3yhCRMmFDnXuHFjvffee7rzzjuLXWc2m9W/f3/17dtXzZo1U926dZWUlKRff/1V77//vvbv36+HH35YCxculK9vxRcvNJuvXBMqWMDDHgt5uJK2TWvpwT4t9cWP+7V04wmF1/HVdW1DHR0LkFRz+yXgzOiXgHOhTwLO53/LI1aYSxQbcnJyJKnUUQ3SpTUW/ti2LPLy8hQXF6eUlBSZzebCrS9jY2MVGxur+fPnq1OnTgoNLfrhNTQ0VP/+97+LHAsJCdGwYcPUrVs3DRo0SLGxsfrqq68KR0+Ul9FoUFCQT5nb+/t7Veh5rmhgzxZKysjTwrVH9MUP+9SkfpBaRQQ7OhZQqCb2S8DZ0S8B50KfBKoflyg2eHh4SLpUHChNbm5ukbZlMX78eK1du1Y33nijJk+eXLggZEpKiiZPnqylS5dq+PDh+vHHH8s8QqFRo0YaMWKEPvvsM/38888VLjZYrTalpmZesZ3JZJS/v5dSU7NksdS8NSP6X99IsWdTtP3geb0+c5NeGXWN6gTylxYcq6b3S8AZ0S8B50KfBJxPQICXjMaKjzZyiWJDWaZIlGWqxR+tWbNGa9euVVBQkKZMmSI/P78iz3vzzTcVExOjY8eOae7cuRo9enSZ83bs2FGSdOLEiTJfczlXs+ewxWKtsXsUP9K3tc4nb9fJ+HRN+e8uPXtvZ3l7usSPOKq5mtwvAWdFvwScC30ScB72WnffJSZHNW7cWJJ05syZUkc3nDx5skjbK9m2bZskKSoqqkihoYCbm5u6desmSYqJibmqvAXTPSwWtmOsSh7uJk0Y0l6Bvu46fSFDHy+NkYWdQQAAAACgyrlEsaFVq1Zyc3NTbm6uoqOjS2yzfft2SVKHDh3KdM+MjIwyP/9q1oGQpMOHD0tSsbUeUPmC/Dz05JAoubsZFXMsUf9ddcTRkQAAAACgxnGJYoOvr6969OghSfruu++KnT9x4oQ2bdokSerdu3eZ7hkRESFJio6OVlpaWrHzeXl52rx5c5G2ZZGRkaG5c+dKkq6//voyXwf7aRzqr0f7tZEkrd5xSqu3n3JwIgAAAACoWVyi2CBJY8eOlcFg0JIlS/Ttt9/K9r+JJAkJCZo4caKsVqt69eqlli1bFrmuZ8+e6tmzp5YvX17keO/eveXu7q6kpCRNnDhR8fHxhedSUlL03HPP6dixYzIYDOrfv3+Ra1988UWtXLmycFHKAkePHtUjjzyiU6dOydvbWw8//LA93wJchc6RdTTk5qaSpLmrDmnPsYsOTgQAAAAANYfBZrPX8g+Vb/bs2Xr77bdls9kUFhamoKAgHTlyRLm5uYqIiNDcuXMVHFx0y8PIyEhJ0ltvvaVBgwYVObd48WI9//zzys/PL7b1ZW5urgwGgyZNmqRHHnmkyHUDBgzQgQMH5ObmpoYNG8rX11dJSUmF60YEBATo/fff13XXXVfh12yxWJWYeOUpH2azUUFBPkpKymBxnf+x2Wya9dMBbdhzVl4eJj13b2fVq1O2XUUAe6BfAs6Hfgk4F/ok4HyCg31kMtWQ3SgKPPjgg4qMjNTMmTMVHR2tixcvKjw8XL1799bo0aPl4+NzVfcbOHCgWrZsqS+//FLbtm3TmTNnZLPZVKdOHXXs2FEjR45U586di1332GOPaf369YqJidGFCxcUGxsrT09PtWnTRjfeeKNGjhypOnXq2Otlo5wMBoPu7x2p88lZOhiXrKnzo/XC/V3k7+Pu6GgAAAAAUK251MiGmoiRDRWXnpWnyV9tU0JSlprW89fTIzrKzWxydCzUAPRLwPnQLwHnQp8EnI+9Rja4zJoNQHn5erlpwpAoeXuYdfR0qmb9dEDU2AAAAACg8lBsQI0QVstH4+5uK5PRoE374vX9xhOOjgQAAAAA1RbFBtQYrRoH6747Li0YunjDcW3eF3+FKwAAAAAA5UGxATXKje3Ddcc1DSRJX/y4X0dPpzg4EQAAAABUPxQbUOMMvbmZOjSrrXyLVdMXROtCSpajIwEAAABAtUKxATWO0WjQ6P6t1bCur1Iz8zR1frSycvIdHQsAAAAAqg2KDaiRPN3NenJIlAJ83XX6fIY+XrJXFivbLQEAAACAPVBsQI0V7O+pJwdHyd1s1J5jF/XtmiOOjgQAAAAA1QLFBtRoEWH+eqRfa0nSqm2n9MuOUw5OBAAAAACuj2IDarwuLetq8E1NJEnf/HxYMccvOjgRAAAAALg2ig2ApDu7N9L1bUNltdn00eIYnb6Q4ehIAAAAAOCyKDYAkgwGg+7v3VIt6gcoK8eiqfN2KzUz19GxAAAAAMAlUWwA/sfNbNS4Qe1UN9BLF1Ky9cHCPcrLZ4cKAAAAALhaFBuAP/DzdteEoVHy8jDryKkUzV62XzabzdGxAAAAAMClUGwA/iSslo/G3t1WRoNBv++N1w+/nXB0JAAAAABwKRQbgBK0aRyse+9oIUlatP64tuyPd3AiAAAAAHAdFBuAUtzcoZ5u79pAkvTFj/t19EyKgxMBAAAAgGug2ABcxrBbmql901rKy7dq+oI9upiS7ehIAAAAAOD0KDYAl2E0GjS6fxvVr+Or1IxcTZ0fraycfEfHAgAAAACnRrEBuAIvD7OeGhqlAB93nTqfrk+W7pXVyg4VAAAAAFAaig1AGQT7e+qJwVFyMxsVffSivvvliKMjAQAAAIDTotgAlFGTcH890q+1JGnl1jit3XnawYkAAAAAwDlRbACuQteWdXX3jU0kSV+vPKS9JxIdnAgAAAAAnA/FBuAq9bu2ka5tEyqrzaYZi2J05kKGoyMBAAAAgFOh2ABcJYPBoAf7tFSz+gHKysnX1Pm7lZaZ6+hYAAAAAOA0KDYA5eBmNmr8oHaqE+ip88nZ+mDhHuXlWx0dCwAAAACcAsUGoJz8vd01YUh7eXmYdfhUir5cfkA2G1tiAgAAAADFBqACwmv7aOzAtjIaDPot5px+/D3W0ZEAAAAAwOEoNgAV1CYiWCNvbyFJWrjumLYdSHBwIgAAAABwLIoNgB3c0rGeenWpL0n6/Id9On421cGJAAAAAMBxKDYAdvKXns0V1bSWcvOtmjY/Womp2Y6OBAAAAAAOQbEBsBOj0aDH+rdR/To+SsnI1dT50crOzXd0LAAAAACochQbADvy8jDrySFR8vdxV1xCuj5duk9WKztUAAAAAKhZKDYAdlY7wEtPDG4ns8moXUcuaN7aI46OBAAAAABVimIDUAmahgfokX6tJEkrtsTp112nHZwIAAAAAKoOxQagklzTKkQDb4iQJH298pD2nUh0cCIAAAAAqBoUG4BKdNd1jdW9TYgsVptmLIrR2YsZjo4EAAAAAJWOYgNQiQwGgx7q01LN6gUoMydfU+dFKz0rz9GxAAAAAKBSUWwAKpmb2aTxg9qpdoCnEpKz9MHCPcrLtzo6FgAAAABUGooNQBXw93HXhCFR8vIw6VBcsr5afkA2G1tiAgAAAKieKDYAVaReHV+NGdBWRoNBG2POadnmk46OBAAAAACVgmIDUIXaNqmle25rLkmav/aoth9McHAiAAAAALA/ig1AFevZqb5u7VxfkvTZ9/t04lyqgxMBAAAAgH1RbAAc4C+3NlO7JrWUm2/V1PnRSkzNdnQkAAAAALAbig2AA5iMRj0+oI3q1fZRSnqups2PVnZuvqNjAQAAAIBdUGwAHMTLw6wJQ6Lk7+2mkwnp+uz7fbJa2aECAAAAgOuj2AA4UO1AL40fHCWzyaidhy9o/q9HHR0JAAAAACqMYgPgYM3qBWhU35aSpOWbT2rd7jMOTgQAAAAAFUOxAXAC3VuHakCPCEnSnBUHtT82ycGJAAAAAKD8KDYATqL/9Y3VrXWILFabZizao3OJmY6OBAAAAADlQrEBcBIGg0Gj7myppvX8lZGdr/fn7VZ6Vp6jYwEAAADAVaPYADgRN7NJ4wdFqZa/pxKSsjRj0R7lW6yOjgUAAAAAV4ViA+BkAnzcNWFolDzdTTpwMllfrTgom40tMQEAAAC4DooNgBOqX8dXYwa2lcEgbYg+q+VbTjo6EgAAAACUGcUGwEm1a1JL9/RqIUma/8tR7Th03sGJAAAAAKBsKDYATuzWzvXVs1M92SR9+v1exZ5Lc3QkAAAAALgiig2AkxvRq7naRgQrN8+qqfN3Kyktx9GRAAAAAOCyKDYATs5kNOrxAW0VXttHyem5mjY/Wjm5FkfHAgAAAIBSUWwAXIC3p1kThkTJz9tNsfFp+vT7vbKyQwUAAAAAJ0WxAXARdQK99MSgKJlNBu08fEELfj3q6EgAAAAAUCKKDYALaVY/QA/d2UqStGzTSa2PPuPgRAAAAABQHMUGwMVc2yZU/a9vLEn6avlBHYhNcmwgAAAAAPgTig2ACxrQI0LXtKori9WmDxftUXxipqMjAQAAAEAhig2ACzIYDBp1Zys1CfdXRna+3p8frfSsPEfHAgAAAABJFBsAl+XuZtITg6NUy99D8YmZmrFoj/ItVkfHAgAAAACKDYArC/Bx14Qh7eXhbtKBk8n6euVB2dgSEwAAAICDUWwAXFz9ur56vH8bGQzSut1ntWJLnKMjAQAAAKjhKDYA1UD7ZrX1l57NJUnzfjminYfOOzgRAAAAgJqMYgNQTfTqUl+3dKwnm6RPvt+r2HNpjo4EAAAAoIai2ABUEwaDQSN6NVebxkHKzbNq2oJoJaXlODoWAAAAgBqIYgNQjZhNRo0Z2FZhtbyVlJajaQuilZNncXQsAAAAADUMxQagmvH2dNOEoe3l6+Wm2HNp+vz7fbKyQwUAAACAKkSxAaiG6gZ6afygdjKbDNp+6LwWrTvm6EgAAAAAahCKDUA11aJBoB7q00qS9OPvsdq456yDEwEAAACoKSg2ANXYtW1D1e+6xpKk2csO6ODJJMcGAgAAAFAjUGwAqrmBN0SoS8u6slht+mDhHsUnZTo6EgAAAIBqjmIDUM0ZDQY93LeVIsL8lJGdr6nzopWRnefoWAAAAACqMYoNQA3g4WbSk4OjFOzvoXOJmZqxKEb5FqujYwEAAACopig2ADVEgK+HnhwcJQ93k/bHJumbnw/JxpaYAAAAACqB2dEBrtamTZs0a9Ys7d69W5mZmQoPD1fv3r01evRoeXt7X/X9zpw5o5kzZ2rDhg06e/asrFar6tSpo27duunBBx9UZGRkqddevHhRH330kX755RclJCTI399fXbt21WOPPaZWrVpV5GUClaJhiJ8e699G0+dH69ddZxQW7K3br2no6FgAAAAAqhmDzYW+2pwzZ47eeOMN2Ww2hYaGKjg4WEeOHFFubq6aNm2quXPnKjAwsMz327lzpx5++GFlZGTIzc1N9evXl5ubm06ePKns7GyZzWa988476tOnT7FrY2Njdc899+jChQvy9vZWRESEzp07p4sXL8rNzU1Tp07VrbfeWuHXbLFYlZiYccV2ZrNRQUE+SkrKUH4+w+NxeSu3nNR/1xyRQdITg6PUoXltR0eqluiXgPOhXwLOhT4JOJ/gYB+ZTBWfBOEy0yhiYmL05ptvSpJee+01rV27VosWLdKqVavUpk0bHT16VC+++GKZ72ez2fTMM88oIyNDHTt21MqVK7V8+XJ9//332rBhg/r166f8/Hy98MILSktLK3bthAkTdOHCBd1www1at26dFi5cqHXr1mns2LHKy8vTpEmTlJCQYNf3ALCX27o20M0dwmWT9MnSvToZn3bFawAAAACgrFym2DBjxgxZrVYNGDBAw4cPl8FgkCSFhIRoypQpMhqNWrlypQ4cOFCm+x05ckSxsbGSpFdeeUXh4eGF5/z8/PTWW2/J29tb6enp2rZtW5FrV69erf3798vPz0/vvvuu/Pz8JElms1kTJkxQ165dlZmZqZkzZ9rjpQN2ZzAYdM9tLdS6cZBy8iyaOj9ayek5jo4FAAAAoJpwiWJDRkaG1q9fL0kaNmxYsfONGzdW9+7dJUnLly8v0z2zs7ML/7tBgwbFzru7uyskJESSlJ+fX+TcsmXLJEm9e/dWQEBAsWsLMha0A5yR2WTU2IFtFVbLW0lpOZq+IFo5eRZHxwIAAABQDbhEsWH//v3Kzc2Vu7u7oqKiSmzTuXNnSdLu3bvLdM+IiAh5enpKurR2w58lJCTo1KlTMplMat26dZFzBc/o0qVLifcuOH7u3DnFx8eXKQ/gCN6ebpowJEq+Xm46fjZNX/ywT1bXWcYFAAAAgJNyiWLD8ePHJUnh4eFyc3MrsU3Dhg2LtL0SX19fjR07VpL07LPPavny5UpKSlJ6ero2bdqk0aNHKy8vT6NHj1a9evUKr8vNzdXp06eLPPPPwsLCCnMeO3asTHkAR6kb5K3xg9rJZDRo28HzWryen1kAAAAAFeMSW1+mpKRIUolTFgoUnCtoWxaPPfaY6tSpoy+++EITJkwocq5x48Z67733dOeddxY5np6eLqvVetk8BoNB/v7+unjxolJTU8ucpzRm85VrQgWrhdpj1VDUPK0jgjWqbyt99v0+/fBbrOrV9tX1UWGOjuXy6JeA86FfAs6FPgk4n/8tj1hhLlFsyMm5tHBdaaMapEtrLPyxbVnk5eUpLi5OKSkpMpvNhVtfxsbGKjY2VvPnz1enTp0UGhpaLMsfn3m5PH9cG6I8jEaDgoJ8ytze39+rQs9DzdX/5uZKzszTvNWH9cWP+xXRIEhtmtRydKxqgX4JOB/6JeBc6JNA9eMSxQYPDw9Jl4oDpcnNzS3StizGjx+vtWvX6sYbb9TkyZMLF4RMSUnR5MmTtXTpUg0fPlw//vijfH19i92/4JmXy1OwLkR5Wa02paZmXrGdyWSUv7+XUlOzZLGwRzHKp2/3hjpxOkVbDyRo8szNevmhrgoJ9nZ0LJdFvwScD/0ScC70ScD5BAR4yWis+Ggjlyg2lGWKRFmmWvzRmjVrtHbtWgUFBWnKlCmF21cW3OPNN99UTEyMjh07prlz52r06NGSLq31YDQaZbVaS81js9kKp0/4+/uXKc/l5OeX/Q9ei8V6Ve2BPxvVt5XOJ2fpxLk0Tfl2l56/r7O8PUsfVYQro18Czod+CTgX+iTgPOy1XrxLTI5q3LixJOnMmTOljm44efJkkbZXsm3bNklSVFRUkUJDATc3N3Xr1k2SFBMTU3jc3d1d4eHhRZ75Z2fPni3MGRERUaY8gLPwcDPpySFRCvLz0NmLmfpocYzy+aYBAAAAwFVwiWJDq1at5ObmptzcXEVHR5fYZvv27ZKkDh06lOmeGRkZZX7+n9eBKHhGQcHizwqOh4aGFlnvAXAVgb4emjAkSh5uJu09kaS5qw7LxpaYAAAAAMrIJYoNvr6+6tGjhyTpu+++K3b+xIkT2rRpkySpd+/eZbpnwYiD6OhopaWlFTufl5enzZs3F2lb4I477pAkLV++vMSpFAUZy5oFcEYNQ/w0un9rGSSt3Xlaq7adcnQkAAAAAC7CJYoNkjR27FgZDAYtWbJE3377beG3rAkJCZo4caKsVqt69eqlli1bFrmuZ8+e6tmzp5YvX17keO/eveXu7q6kpCRNnDhR8fHxhedSUlL03HPP6dixYzIYDOrfv3+Ra3v16qXIyEilpaVp0qRJhcUKi8WiqVOnauvWrfLy8tKoUaMq460AqkzH5nU09JZmkqT/rjms3UcuODgRAAAAAFdgsLnQ2OjZs2fr7bffls1mU1hYmIKCgnTkyBHl5uYqIiJCc+fOVXBwcJFrIiMjJUlvvfWWBg0aVOTc4sWL9fzzzys/P7/Y1pe5ubkyGAyaNGmSHnnkkWJZjh8/rpEjR+rixYvy9vZWRESEzp07p4sXL8rNzU3vvfeebrvttgq/ZovFqsTEK0/5MJuNCgryUVJSBovrwK5sNpu+XH5Q63afkYe7Sc/d21kN6vo6OpZLoF8Czod+CTgX+iTgfIKDfWQyVXxcgsuMbJCkBx98ULNmzdKNN96orKwsHTlyROHh4Xr88ce1YMGCYoWGKxk4cKAWLFigQYMGKTw8XGfOnNGJEydUu3Zt9e3bV998802JhQbp0tSKpUuX6t5771VQUJAOHTok6dIUi++++84uhQbAGRgMBt17ewu1ahSknFyLps3frZT0nCtfCAAAAKDGcqmRDTURIxvgLDKy8zT5q+2KT8xUk3B/PT2io9zdTI6O5dTol4DzoV8CzoU+CTifGjmyAYDj+Hi66akhUfLxNOvYmVR98eN+WalVAgAAACgBxQYAZRYS7K3xg9rJZDRo64EELVl/3NGRAAAAADghig0ArkpkwyDd3/vSwqvf/3ZCv+895+BEAAAAAJwNxQYAV+2GqHD16d5QkjTrp/06fCrZsYEAAAAAOBWKDQDKZfBNTdWpRR3lW2yavmCPEpKzHB0JAAAAgJOo9GKDxWLR119/rTFjxmjcuHGaN29eZT8SQBUwGgx6tF9rNQrxU3pWnqbNj1Zmdr6jYwEAAABwAnYpNsyfP1+tWrXSU089VezcxIkT9cYbb2jt2rVavXq1XnrpJf31r3+1x2MBOJiHu0lPDolSkJ+HzlzI0EdLYmSxsm0VAAAAUNPZpdiwceNGSVK/fv2KHN+8ebNWrFghm82mjh076rrrrpMkLV++XKtWrbLHowE4WJCfh54cHCV3N6P2Hk/U3FWHZWNLTAAAAKBGs0uxYf/+/ZKkTp06FTm+ePFiSdKwYcM0d+5czZw5U0888YRsNpsWLVpkj0cDcAKNQv00+q42Mkj6Zcdprd5+ytGRAAAAADiQXYoNSUlJcnd3V3BwcJHjv//+uwwGg+67777CYyNHjpQkxcTE2OPRAJxEpxZ1NOSWppKk/6w+rOijFx2cCAAAAICj2KXYkJGRIQ8PjyLHEhISdO7cOdWqVUvNmzcvPB4QECBfX18lJiba49EAnEjvaxrqhqgw2WzSx0tidOp8uqMjAQAAAHAAuxQbfH19lZaWpqys/9/6buvWrZKkjh07lnjNn4sTAFyfwWDQfXdEqmXDQGXnWjR1XrRSMnIdHQsAAABAFbNLsaFg5MKyZcsKjy1evFgGg0Fdu3Yt0jYtLU3p6emqXbu2PR4NwMmYTUaNvbudQoK8dDE1Wx8siFZunsXRsQAAAABUIbsUG/r16yebzabXXntNL7/8ssaNG6f169fLzc1Nffr0KdJ2586dkqTGjRvb49EAnJCvl5smDG0vH0+zjp5J1cyf9rNDBQAAAFCD2KXYMGTIEF133XXKzs7Wd999p9WrV8tgMOipp55SnTp1irRdvnx5iSMeAFQvocHeGnt3O5mMBm3Zn6AlG447OhIAAACAKmK2x01MJpM+//xz/fDDD9q5c6f8/f114403qnPnzkXa5ebm6vz58+rSpYtuvPFGezwagBNr1ShI990RqdnLDmjpxhMKDfZW9zahjo4FAAAAoJIZbIxtdmoWi1WJiRlXbGc2GxUU5KOkpAzl51urIBlQdt/9ckTLN5+U2WTU0yM6qln9AEdHqhL0S8D50C8B50KfBJxPcLCPTKaKT4KwyzQKALicITc3VcfmtZVvsWr6wmhdSM668kUAAAAAXFaVFBt++eUXTZ48WW+++aY2btxYFY8E4ESMBoNG39VGDUN8lZaZp6nzo5WZne/oWAAAAAAqiV2KDStXrtStt96ql156qdi5t956S2PHjtU333yjOXPm6JFHHtE///lPezwWgAvxcDdpwpD2CvR11+kLGfp4aYwsVoZLAgAAANWRXYoNa9as0ZkzZ9SlS5cix/fu3asvv/xSNptNYWFhatiwoWw2m2bPnq3Nmzfb49EAXEiQn4eeHBIldzejYo4l6r+rjzg6EgAAAIBKYJdiw549eyRJ1157bZHjCxYskCTddtttWrVqlVasWKGRI0fKZrPpu+++s8ejAbiYxqH+erRfG0nS6u2ntHr7KQcnAgAAAGBvdik2JCYmymQyqU6dOkWOb9y4UQaDQY8++qiMxkuPeuyxxyRJu3btssejAbigzpF1NOTmppKkuasOac+xiw5OBAAAAMCe7FJsSEtLk4+PT5FjSUlJio2Nlb+/v6KiogqP161bV15eXjp//rw9Hg3ARfXp1lA92oXJZpM+XhKj0+fTHR0JAAAAgJ3Ypdjg7e2ttLQ05eXlFR7bvn27JKlDhw7F2ru5uclkMtnj0QBclMFg0P29I9WiQaCyciyaOj9aqRm5jo4FAAAAwA7sUmxo0qSJbDabfv3118Jjy5Ytk8FgUOfOnYu0zcrKUlpaWrEpFwBqHrPJqPGD2qlukJcupGRr+sJo5eVbHB0LAAAAQAXZpdhw2223yWaz6YUXXtCnn36qN954Qz/99JOMRqP69OlTpO2ePXtks9lUv359ezwagIvz9XLThCFR8vYw6+jpVM366YBsNpujYwEAAACoALsUG+69915FRkYqOTlZ7733nubMmSObzaZ7771XDRo0KNJ25cqVMhgMxbbJBFBzhdXy0bi728pkNGjTvnh9v/GEoyMBAAAAqACzPW7i4eGhuXPn6ssvv9SuXbvk5+enW265Rf369SvSLjc3V1u3blVYWJh69Ohhj0cDqCZaNQ7WfXdEavayA1q84bhCgr3VrXWIo2MBAAAAKAeDjfHKTs1isSoxMeOK7cxmo4KCfJSUlKH8fGsVJAMqx7drDmvFljiZTUY9c09HNa0X4OhI5Ua/BJwP/RJwLvRJwPkEB/vIZKr4JAi7TKMAAHsZenMzdWhWW/kWq6YviNaFlCxHRwIAAABwlSql2JCenq4tW7Zo2bJlWrZsmbZs2aL09PTKeBSAasZoNGh0/9ZqWNdXqZl5mjo/Wlk5+Y6OBQAAAOAq2GXNhgIHDx7Ue++9p/Xr18tqLToMymg06qabbtKECRMUGRlpz8cCqGY83c16ckiUXv9qm06fz9AnS/fqicHtZDIyGAsAAABwBXb7l/vKlSs1bNgw/frrr7JYLLLZbEV+WSwW/fLLLxo2bJh+/vlnez0WQDUV7O+pJwdHyd1sVPTRi/p2zRFHRwIAAABQRnYpNsTFxWnSpEnKyclReHi4Xn75Za1cuVLR0dGKjo7WypUr9fLLL6tevXrKycnRpEmTFBcXZ49HA6jGIsL89Ui/1pKkVdtO6ZcdpxycCAAAAEBZ2KXY8MUXXyg3N1cdOnTQ0qVLNWLECDVs2FDu7u5yd3dXw4YNNWLECC1dulQdOnRQbm6uZs2aZY9HA6jmurSsq8E3NZEkffPzYcUcv+jgRAAAAACuxC7Fht9//10Gg0GvvvqqfHx8Sm3n7e2tV199VTabTRs3brTHowHUAHd2b6Tr24bKarPpo8UxOn3hytvBAgAAAHAcuxQbzp07Jx8fnzIt/BgZGSlfX1+dO3fOHo8GUAMYDAbd37ulWtQPUFaORVPn7VZqZq6jYwEAAAAohV2KDWazWfn5ZduazmazKS8vT2azXTfCAFDNuZmNGjeoneoGeulCSrY+WLhHefnWK18IAAAAoMrZpdjQqFEj5eTkaP369Vdsu379euXk5KhRo0b2eDSAGsTP210ThkbJy8OsI6dSNHvZftlsNkfHAgAAAPAndik29OzZUzabTS+++KKOHj1aarsjR47opZdeksFg0K233mqPRwOoYcJq+Wjs3W1lNBj0+954/fB7rKMjAQAAAPgTg80OXwump6erb9++io+Pl5ubm3r37q1rr71WISEhki6t6fD7779rxYoVysvLU2hoqH744Qf5+vpW+AVUdxaLVYmJV14Mz2w2KijIR0lJGcpnaDlqgLW7Tuur5QclSY8PaKNrWoU4OFFx9EvA+dAvAedCnwScT3Cwj0ymio9LsEuxQZIOHz6sxx9/XKdPn5bBYCixjc1mU/369fXRRx+pefPm9nhstUexASjdf1cf1sqtcXIzG/XMPZ3UJNzf0ZGKoF8Czod+CTgX+iTgfOxVbLDLNApJat68uZYuXaqJEyeqVatWMhqNstlsstlsMhqNatWqlSZNmqQlS5ZQaABgF8Nuaab2TWspL9+qaQuidTEl29GRAAAAAMiOIxv+LC8vTykpKZKkgIAAubm5SZLS0tJ0//33y2AwaOHChZXx6GqFkQ3A5WXl5Outr3fo1Pl01a/jq2fv7SQvD+fY7YZ+CTgf+iXgXOiTgPNxupENf+bm5qbatWurdu3ahYUGScrPz9f+/fu1f//+yno0gBrEy8OsCUOi5O/jrlPn0/XJ0r2yWtmhAgAAAHCkSis2AEBVqRXgqScHR8nNbFT00Yv67pcjjo4EAAAA1GgUGwBUC03C/fVIv9aSpJVb47R252kHJwIAAABqLooNAKqNri3r6u4bm0iSvl55SHtPJDo4EQAAAFAzUWwAUK30u7aRrm0TKqvNphmLYnTmwpUXWAUAAABgXxQbAFQrBoNBD/ZpqWb1A5SVk6+p83crLTPX0bEAAACAGoViA4Bqx81s1PhB7VQn0FPnk7P14cI9ymM7LQAAAKDKUGwAUC35e7trwpD28vIw69CpFH25/IBsNrbEBAAAAKqCuTwXtWrVyt45AMDuwmv7aOzAtnrvu936Leacwmp5q++1jR0dCwAAAKj2yjWywWazVegXAFSVNhHBGnl7C0nSgl+PaduBBAcnAgAAAKq/co1sGD9+vL1zAECluaVjPZ29mKFV207p8x/2qVaApyLC/B0dCwAAAKi2KDYAqBH+0rO5EpKyFH30oqbNj9aLD3RRsL+no2MBAAAA1RILRAKoEYxGgx7r30b16/goJSNXU+dHKzs339GxAAAAgGqJYgOAGsPLw6wnh0TJ38ddcQnp+nTpPlmtrCMDAAAA2BvFBgA1Su0ALz0xuJ3MJqN2HbmgeWuPODoSAAAAUO1QbABQ4zQND9Aj/S5t4btiS5x+3XXawYkAAACA6oViA4Aa6ZpWIRp4Q4Qk6euVh7TvRKKDEwEAAADVB8UGADXWXdc1Vvc2IbJYbZqxKEZnL2Y4OhIAAABQLVBsAFBjGQwGPdSnpZrVC1BmTr6mzotWelaeo2MBAAAALo9iA4Aazc1s0vhB7VQ7wFMJyVn6YOEe5Vusjo4FAAAAuDSKDQBqPH8fd00YEiUvD5MOxSXry+UHZLOxJSYAAABQXhQbAEBSvTq+GjOgrQwGaeOec1q2+aSjIwEAAAAui2IDAPxP2ya1dE+vFpKk+WuPavvBBAcnAgAAAFwTxQYA+INbO9fXrZ3rS5I++36fTpxLdXAiAAAAwPVQbACAP/nLrc3Urkkt5eZbNXV+tBJTsx0dCQAAAHApFBsA4E9MRqMeH9BG9Wr7KCU9V9PmRys7N9/RsQAAAACXQbEBAErg5WHWhCFR8vd208mEdH32/T5ZrexQAQAAAJQFxQYAKEXtQC+NHxwls8monYcvaP6vRx0dCQAAAHAJFBsA4DKa1QvQqL4tJUnLN5/Uut1nHJwIAAAAcH4UGwDgCrq3DtWAHhGSpDkrDmp/bJKDEwEAAADOjWIDAJRB/+sbq1vrEFmsNs1YtEfnEjMdHQkAAABwWhQbAKAMDAaDRt3ZUk3r+SsjO19T5+1Welaeo2MBAAAAToliAwCUkZvZpPGDolTL31PxSVmasWiP8i1WR8cCAAAAnA7FBgC4CgE+7powNEqe7iYdOJmsr1YclM3GlpgAAADAH1FsAICrVL+Orx4f0FYGg7Qh+qyWbznp6EgAAACAUzE7OsDV2rRpk2bNmqXdu3crMzNT4eHh6t27t0aPHi1vb+8y32fz5s26//77y9T2iSee0Pjx44sci4yMvOw1tWvX1saNG8ucB4BriWpaSyNuba65qw5r/i9HFRLkrU4t6jg6FgAAAOAUXKrYMGfOHL3xxhuy2WwKDQ1VWFiYjhw5oo8++kgrV67U3LlzFRgYWKZ7+fn5qVOnTqWeT09P16FDhyRJHTt2LLVd27Zt5e7uXux4WXMAcF29ujTQucRMrdlxWp9+v1fPjuysRqF+jo4FAAAAOJzB5iKTjWNiYjR06FDZbDa9+uqrGjZsmAwGg+Lj4zVmzBjt3btXt99+u6ZPn26X533wwQeaPn26wsLCtGbNGhmNRWecFIxsWL16terXr2+XZ5bEYrEqMTHjiu3MZqOCgnyUlJSh/HwWrAOqisVq1dR50Yo5nqhAX3e9+EBXBfl5SKJfAs6Ifgk4F/ok4HyCg31kMlV8xQWXWbNhxowZslqtGjBggIYPHy6DwSBJCgkJ0ZQpU2Q0GrVy5UodOHCgws+y2WxavHixJGnAgAHFCg0AUMBkNOrxAW0VXttHyem5mjY/Wjm5FkfHAgAAABzKJT5FZ2RkaP369ZKkYcOGFTvfuHFjde/eXZK0fPnyCj9v69atiouLkyQNGjSowvcDUL15e5o1YUiU/LzdFBufps9+2Kd8i1X7TyTq1x2ntP9EoqxWlxhEBgAAANiFS6zZsH//fuXm5srd3V1RUVEltuncubN+++037d69u8LPW7RoUeE9GzVqdNm2M2bMUEJCgiwWi0JCQtS9e3fdeeedJa7jAKD6qhPopScGRelf/9mhHYfO68mp65X9hxEOQX4euqdXc3WOrOvAlAAAAEDVcImRDcePH5ckhYeHy83NrcQ2DRs2LNK2vDIzMwtHR9x9991XbL9gwQKtX79ev/32mxYtWqRnnnlGvXv31t69eyuUA4DraVY/QDd3rCdJRQoNkpSUlqMPF8Vo+8EER0QDAAAAqpRLjGxISUmRJAUEBJTapuBcQdvyWr58uTIzM+Xl5aU+ffqU2u7WW2/VgAED1LJlS4WGhiojI0O///673nvvPcXFxWnUqFFavHixwsLCKpRHurRwzpUULOBhj4U8AJSP1WrTjoPnL9vmP6sPq2urEBmNhipKBeCP+PsScC70ScD5GOz0z1SXKDbk5ORIUqmjGiQVTlsoaFteBVMobr/9dvn6+pbabsaMGUX+38PDQ3379tW1116rwYMH68yZM/rggw/0xhtvVCiP0WhQUJBPmdv7+3tV6HkAym/PkQtKTLv8n0GJqTk6k5Stds1qV1EqACXh70vAudAngerHJYoNHh6XtpHLy8srtU1ubm6RtuURFxenrVu3SirbFIqSBAcHa/To0XrllVe0atUqTZ48uXDnjPKwWm1KTc28YjuTySh/fy+lpmbJYmHbIMAR4s6WbWRV3NkU1a/FP6oAR+DvS8C50CcB5xMQ4GWXHRldothQlikSZZlqcSWLFy+WzWZTvXr1Cne3KI+OHTtKkpKTk5WcnKygoKBy30vSVe05bLFY2aMYcBA/r9JHX/25Hf0UcCz+vgScC30ScB42O22i5hKToxo3bixJOnPmTKmjG06ePFmk7dWy2WxavHixJGngwIEVGo3wx+keFovlMi0BVCctGgQqyO/yo6uC/TzUokFg1QQCAAAAHMQlig2tWrWSm5ubcnNzFR0dXWKb7du3S5I6dOhQrmds2bJFp06dksFgKPcUigKHDx+WdGlKR2BgYIXuBcB1GI0G3dOr+WXbjOjVnMUhAQAAUO25RLHB19dXPXr0kCR99913xc6fOHFCmzZtkiT17t27XM8oWBiyS5cuatCgQTmTSvn5+Zo1a5YkqXv37jKbK3+mitVm1cHEI9oQu1UHE4/IamMIGuAonSPratzdbYuNcAj289C4u9uqc2RdByUDAAAAqo5LrNkgSWPHjtXatWu1ZMkSderUScOGDZPBYFBCQoImTpwoq9WqXr16qWXLlkWu69mzpyTp6aefLrUQkZGRoRUrVkiSBg0adMUs77zzjpo2barbbrutyI4VZ8+e1euvv65du3bJbDZr3Lhx5X25ZbYrYY/mHV6q5Jz/X88i0CNAQ5v3V4e67Sr9+QCK6xxZVx2b19HRMynKsxnkZrCpaXgAIxoAAABQYxhsNnst/1D5Zs+erbfffls2m01hYWEKCgrSkSNHlJubq4iICM2dO1fBwcFFromMjJQkvfXWW6UWEhYuXKhnn31W3t7e2rBhg3x8Lr/V5NixY7V69WqZTCY1aNBAAQEBSktL0/Hjx2Wz2eTh4aHJkyerf//+FX7NFotViYkZJZ7blbBHn8XMKfXaR9veR8EBcCCz2aigIB8lJWWw6BXgJOiXgHOhTwLOJzjYRyZTDdmNosCDDz6oyMhIzZw5U9HR0bp48aLCw8PVu3dvjR49+opFgtIUTKG44447ynSPESNGqHbt2oqJiVFCQoJOnz4tNzc3NW/eXNdee63uvfdeNWzYsFxZyspqs2re4aWXbTP/8FJF1Wkjo8ElZssAAAAAAKoJlxrZUBOVNrLhUNJRTd35yRWvn9DxMbUIaloZ0QBcAd/WAM6Hfgk4F/ok4HzsNbKBr7xdVGpOql3bAQAAAABgLxQbXJS/h3+Z2vm5+1VyEgAAAAAAiqLY4KKaBUYo0CPgiu1Wxv6i+MzzVZAIAAAAAIBLKDa4KKPBqKHNL7/bhdFg1IGkw3pz8xR9f3S5ci25VZQOAAAAAFCTUWxwYR3qttOjbe8rNsIhyCNAj7a9Ty92m6TWtSKVb7Noeewavb75XUWf3+ugtAAAAACAmoLdKJxcabtR/JHVZtXxtBPKN+fKnO+uCL/Ghdtd2mw27b6wV/MPLVVSTrIkqW2tVhraor9qe9Wq7PhAjcYK24DzoV8CzoU+CTgfe+1GQbHByZWl2CBd+Q/qHEuulp9YrdUn18lis8jNaNbtjW7RbQ1vlpvJrTKiAzUe/4ACnA/9EnAu9EnA+bD1Ja6Kh8ldA5r20XPX/FWRQc2UZ83Xj8d/1uQtU7T34kFHxwMAAAAAVCMUG2qYUJ+6eqLDoxrV5h4FuPvrQtZFzdj9hT7b85USs5McHQ8AAAAAUA2YHR0AVc9gMKhzSAe1qdVSPx1fpV9ObdCu8zHad/Gg+jTupZ4Nb5DZyI8GAAAAAKB8GNlQg3maPTWoeT892/UpNQ2IUK41T0uOLdObW97XwcQjjo4HAAAAAHBRFBugcN9Q/bXT47q/1XD5ufkqPjNB03Z9qpkx3yg5J8XR8QAAAAAALoax8pB0aWpFt7DOale7tX44vkLrTv2u7Qm7FXNxv/pG3K6b618vk9Hk6JgAAAAAABfAyAYU4e3mpWEtBuqZrk8qwr+hciy5WnjkB729daqOJB93dDwAAAAAgAug2IASNfCrp4mdx2pkyyHycfPWmYxzem/HR/pq37dKzU1zdDwAAAAAgBNjGgVKZTQYdV34NYqq00ZLjy7Xb2e2aPO57Yq+sFf9mtyhG+tdK6OBehUAAAAAoCg+KeKKfN18dE/LwZrUZZwa+tVTVn625h1aon9tnabjKbGOjgcAAAAAcDIUG1Bmjf0b6u9dntDwFnfLy+yluPQzemf7h/pm/3yl52Y4Oh4AAAAAwEkwjQJXxWgw6sb616pj3XZafOQnbTq3Tb+d3aLd52PUv2lvXRd+DVMrAAAAAKCG41MhysXP3Vf3tR6mv3Yao3q+YcrIz9R/Di7UO9s/1MnUU46OBwAAAABwIIoNqJBmgRF6psuTGtK8vzxNHopNjdO/tk3XtwcXKTMv09HxAAAAAAAOQLEBFWYymnRLgx56qfvf1SWkg2yyad3p3/Xqpn9r09ltstlsjo4IAAAAAKhCFBtgNwEe/nqozT2a0HG0Qr3rKj0vQ3P2f6f3dnyk0+lnHR0PAAAAAFBFKDbA7loENdOz1zylgU3vlLvJXUdTTujtrVM1//BSZeVnOzoeAAAAAKCSUWxApTAbzbqt0c16qdskdazTTlabVb/EbdDrm/6tbed2MrUCAAAAAKoxig2oVEGegXqk3X0a1/5h1fWqrZTcNM3a9x9N2/mpzmbEOzoeAAAAAKASUGxAlWhdK1LPdZuou5rcITejWYeSj+rNLe9p8ZGflJ2f4+h4AAAAAAA7otiAKuNmNKt341v1YrdJale7taw2q34+uVavb35HOxP2MLUCAAAAAKoJig2ocrW8gvV41IN6POpB1fIMVnJOij6PmaMPd3+hhMzzjo4HAAAAAKggig1wmHa1W+uFbn9Tn8a9ZDaYtD/xkN7YPEXfH1uhXEuuo+MBAAAAAMqJYgMcyt3kpn5Nbtfz3f6m1sGRyrdZtPzEak3e/K72XNjn6HgAAAAAgHKg2ACnUNe7tsa2H6VH296nII9AXcxO0sfRs/Vx9CxdyEp0dDwAAAAAwFUwOzoAUMBgMKhD3XZqVStSy46v0uq4ddpzYb8OJB7WHY16qlfDm+RmcnN0TAAAAADAFTCyAU7Hw+Sugc3u1PPX/FUtgpopz5qvH46v1BtbpmjfxYOOjgcAAAAAuAKKDXBaoT4herLDo3qozT0KcPfT+ayL+nD3F/pszxwlZSc7Oh4AAAAAoBRMo4BTMxgM6hLSQW1qtdRPx3/W2lMbtev8Hu27eEB9InqpZ4MbZDbyYwwAAAAAzoSRDXAJXmZPDW5+l/7RdYKaBjRWrjVPS44u01tb3tehpCOOjgcAAAAA+AOKDXAp9XzD9NdOY3R/q+Hyc/PVucwETd35qWbtnavknBRHxwMAAAAAiGkUcEEGg0HdwjqrXe3W+v7YCq0//bu2xe9SzIX96htxm26qf71MRpOjYwIAAABAjcXIBrgsbzcvDY8cqKe7PqHG/g2VbcnRgiM/6O2tU3Uk+bij4wEAAABAjUWxAS6voV99/a3zWN3TcrB8zN46k3FO7+34SF/t+1apuWmOjgcAAAAANQ7TKFAtGA1GXR/eTe3rtNXSo8v025mt2nxuu6Iv7NVdTXrrhnrdZTRQWwMAAACAqsCnL1Qrvm4+uqflEP2t8zg18KunrPxsfXdosf61bbqOp5x0dDwAAAAAqBEoNqBaighoqKe7PKHhLQbKy+ypuLTTenf7h5p7YL7S8zIcHQ8AAAAAqjWKDai2jAajbqx/nV7u/rS6hXaWTTZtPLNFr236tzae2SyrzeroiAAAAABQLVFsQLXn5+6r+1sP1187jVG4T6gy8jI198ACvbt9hk6mnXJ0PAAAAACodig2oMZoFhihf3SdoMHN+snT5KETqSf1r63T9e3BxcrMy3J0PAAAAACoNig2oEYxGU3q2fBGvdh9krqEdJBNNq07/Zte2/RvbT67XTabzdERAQAAAMDlUWxAjRToEaCH2tyjJzuMVoh3XaXlpeur/d/qvR0f6XT6WUfHAwAAAACXRrEBNVpkcDM9d81TGtC0j9yNbjqackJvb52qBYe/V1Z+tqPjAQAAAIBLotiAGs9sNOv2Rrfope5/V4c67WS1WbUmbr1e3/RvbYvfxdQKAAAAALhKFBuA/wnyDNSj7e7TuPYPq45XLaXkpmnW3rmatuszncuId3Q8AAAAAHAZFBuAP2ldK1LPXzNR/SJul5vRrENJR/Tmlve1+MhPyrHkOjoeAAAAADg9ig1ACdxMbuoT0UsvdJukdrVbyWKz6OeTa/X6pne0K2EPUysAAAAA4DIoNgCXUdsrWI9HPaTHox5ULc8gJeUk67OYOfpw9xdKyDzv6HgAAAAA4JQoNgBl0K52a73Q7W/q3fhWmQ0m7U88pDc2T9EPx1Yo15Ln6HgAAAAA4FQoNgBl5G5y111N7tDz3SaqVXAL5dssWnZitSZvfld7LuxzdDwAAAAAcBoUG4CrVNe7jsa1f1iPtL1PgR4BupidqI+jZ+vj6Fm6kJXo6HgAAAAA4HBmRwcAXJHBYFDHuu3UKriFlp9YrdVx67Tnwn4dSDysOxrdql6NbpKbke4FAAAAoGZiZANQAZ5mDw1sdqeev+avahHYVHnWfP1wfIXe3DxF+y8ecnQ8AAAAAHAIig2AHYT6hOjJjqP1UOsRCnD3U0LWBX2w+3N9tmeOkrKTHR0PAAAAAKoU47wBOzEYDOoS2lFtarfSj8dX6tdTv2nX+T3al3hQdzbupVsa9JCZqRUAAAAAagBGNgB25mX21JDm/fWPrhPUJKCxci25Wnz0J7215X0dSjri6HgAAAAAUOkoNgCVpJ5vmP7a6XHd12qYfN18dC4zQVN3fqpZe+cqJSfV0fEAAAAAoNIwphuoREaDUd3Duiiqdmt9f2yF1p/epG3xuxRzYb/6NrldN9W7TiajydExAQAAAMCuGNkAVAFvN28Nj7xbT3d5Qo38GyjbkqMFh7/XP7dN09HkE46OBwAAAAB2RbEBqEIN/etrUudxuidysHzM3jqdflZTdszQnH3fKS033dHxAAAAAMAumEYBVDGjwajr63VT+zptteToMv12dos2ndum3Rf2qn+TO9SjXncZDdQBAQAAALguPtEADuLr7qORrYZoUudxauAbrqz8LH17aLH+vW26TqSedHQ8AAAAACg3ig2Ag0UENNLTXZ/UsBYD5WX21Mm003pn24eae2CB0vMyHB0PAAAAAK4axQbACRgNRt1U/zq91P3v6hbaWTbZtPHMZr226d/aeGazrDaroyMCAAAAQJlRbACciL+7n+5vPVx/7TRG4T6hysjL1NwDCzRl+wzFpZ12dDwAAAAAKBOKDYATahYYoX90naDBzfrJw+Su46kn9c+t0/TdocXKzMtydDwAAAAAuCyKDYCTMhlN6tnwRr3U/e/qXLe9bLLp11O/6bVN/9bms9tls9kcHREAAAAASkSxAXBygR4BGtV2pJ7o8KhCvOsqLS9dX+3/Vu/t+Fhn0s85Oh4AAAAAFEOxAXARLYOb67lrntKApn3kbnTT0ZTjemvr+1pw+Htl52c7Oh4AAAAAFKLYALgQs9Gs2xvdohe7T1KHOm1ltVm1Jm69Xtv0jrbF72JqBQAAAACnQLEBcEHBnkF6tN39Gtv+YdX2qqWU3FTN2jtX03d9pnMZCY6OBwAAAKCGo9gAuLA2tSL1wjUT1S/idrkZzTqYdERvbnlPS44uU44l19HxAAAAANRQFBsAF+dmclOfiF56odvf1LZWK1lsFq2M/UWvb3pHu87HMLUCAAAAQJUzOzrA1dq0aZNmzZql3bt3KzMzU+Hh4erdu7dGjx4tb2/vMt9n8+bNuv/++8vU9oknntD48eOLHc/IyNCnn36qFStW6MyZM/L29lb79u01atQodevWrcxZAHuo7VVLY9o/pOjzezXv8FIlZifpsz1fqXWtSA1tPkB1vWs7OiIAAACAGsJgc6GvPefMmaM33nhDNptNoaGhCg4O1pEjR5Sbm6umTZtq7ty5CgwMLNO99u3bp9dff73U8+np6Tp06JAkaebMmbr++uuLnE9MTNQ999yj48ePy93dXc2aNVNiYqLOnTsng8GgF198USNHjiz3ay1gsViVmJhxxXZms1FBQT5KSspQfr61ws+Fa8u15GpF7C9aFbtW+TaLzEazbmt4s25vdIvcTW6Ojldj0C8B50O/BJwLfRJwPsHBPjKZKj4JwmWKDTExMRo6dKhsNpteffVVDRs2TAaDQfHx8RozZoz27t2r22+/XdOnT7fL8z744ANNnz5dYWFhWrNmjYzGom/2mDFjtGbNGrVp00YfffSRQkJCZLPZ9N133+mll16SyWTSggUL1KpVqwrloNiAiojPPK95h5Zof+Klwlktz2ANazFAbWtX7OcSZUO/BJwP/RJwLvRJwPnYq9jgMms2zJgxQ1arVQMGDNDw4cNlMBgkSSEhIZoyZYqMRqNWrlypAwcOVPhZNptNixcvliQNGDCgWKFh3759hQWI9957TyEhIZIkg8Gg4cOHa8CAAbJYLJoxY0aFswAVEeJdR+PaP6yH296rQI8AXcxO1EfRs/RJ9Je6mJXo6HgAAAAAqimXKDZkZGRo/fr1kqRhw4YVO9+4cWN1795dkrR8+fIKP2/r1q2Ki4uTJA0aNKjY+RUrVkiSunfvrkaNGhU7P3z4cEnSr7/+qszMzArnASrCYDCoU90ovdhtkno1vElGg1HRF/bq9c3vavmJ1cqz5js6IgAAAIBqxiWKDfv371dubq7c3d0VFRVVYpvOnTtLknbv3l3h5y1atKjwniUVE3bt2iVJ6tKlS4nXR0VFyd3dXTk5Odq/f3+F8wD24Gn20N3N+urZrk+peWAT5Vnz9P2xFXpzy5TCaRYAAAAAYA8uUWw4fvy4JCk8PFxubiUvbtewYcMibcsrMzOzcHTE3XffXWKbEydOFHnmn7m5uSksLMwueQB7C/cN1YSOj+nB1iPk7+6nhMwL+mDX5/o85mslZSc7Oh4AAACAasAltr5MSUmRJAUEBJTapuBcQdvyWr58uTIzM+Xl5aU+ffpUOE9qamqF8kiXFs65koIFPOyxkAdqhmvrd1aHkNZaenSlfjm5QTsTorXv4gH1bXKbejW6USajydERXR79EnA+9EvAudAnAefzv+URK8wlig05OTmSVOqoBklyd3cv0ra8CqZQ3H777fL19a1wnuzs7ArlMRoNCgryKXN7f3+vCj0PNUuQfPR43XvUu+WN+mL7f3Tw4jEtPPyjtsTv0MOd/6I2dVs4OmK1QL8EnA/9EnAu9Emg+nGJYoOHh4ckKS8vr9Q2ubm5RdqWR1xcnLZu3Sqp9CkUBc/IysoqUx5PT89y55Ekq9Wm1NQrLzJpMhnl7++l1NQsWSxsG4SrE6AgPdXpcW06s10LD/2gU6ln9eov7+masE4a0qKfAjz8HR3RJdEvAedDvwScC30ScD4BAV7FdmQsD5coNpRlikRZpjZcyeLFi2Wz2VSvXr3C3S1K4u/vr6ysrDLl8fev+Ie0q9lz2GKxskcxyu2akM5qG9xKS4+t0IbTm7Tl7A5FJ+xTvya368Z61zK1opzol4DzoV8CzoU+CTgPm80+93GJyVGNGzeWJP1fe/ceFXWd+H/8NTMMKOAFFEjUFI3AGyqauGW6WnlZy1xXbV3X8qupv/yWuWHbWupqnn64m7vl6q+V+ma6pXlpvfTVgs5quskmGGomKorXuKggoEAKDDO/P1w4uV7RD3wG5vk4p3OY+VzmNXQ+Mrx4v9+f7OzsG44mOH369FX7VpfL5dLGjRslScOHD5flJhNVKl/j1KlT191eXl6u7Ozsu8oDmMXX7qtfRvxcL/d8Xm0atdblisv65Oin+sM3f9HxCyfNjgcAAACgDqgTZUOHDh1kt9tVVlam/fv3X3ef1NRUSVK3bt3u6DVSUlKUmZkpi8Vy0ykUP36Nytf8T/v371d5ebl8fHzUoUOHO8oDmK1N49aa0fO/NSZihHy9GiqrOEd/Sn1HHx5aq6KyYrPjAQAAAHBjdaJs8Pf3V58+fSRJa9euvWb7yZMntWvXLknS4MGD7+g1KheG7Nmzp1q3bn3TfQcNGiRJSk5Ovu7ohjVr1kiS+vbtKz+/21/cEXA3VotVfVr21u97/1YPtnhAkrQr5xu9vutNfZX1tZwuhjsCAAAAuFadKBskaerUqbJYLNq0aZPWrFkj178nkpw7d04vvfSSnE6nHn30UUVGRl513IABAzRgwAAlJCTc8NwlJSVKTEyUJI0YMeKWWTp16qT+/furoqJCv/nNb3Tu3DlJV6ZirFmzRps2bZLVatVzzz13p28XcCv+3n4a22GUYnv8t1r5h+oHxyWtTt+gN79ZolMXvzc7HgAAAAA3Y3G5jFr+oeYtX75cCxYskMvlUosWLRQQEKCMjAyVlZUpLCxMq1atUmBg4FXHRERESJLi4uJuWCSsX79eM2fOlK+vr3bu3HlboxHy8/M1ZswYnTx5Ut7e3rrvvvtUUFCgnJwcWSwWvfbaaxo3btxdv+eKCqfy80tuuZ+Xl1UBAX4qKChhcR3UKKfLqX9mfa3NxxN1yXFZFln0UGgvDWs/RH52X7PjuRWuS8D9cF0C7oVrEnA/gYF+stk85G4UlcaPH6+IiAgtW7ZM+/fv1/nz5xUaGqrBgwdr8uTJdzxloXIKxaBBg277HIGBgfr73/+u9957TwkJCcrIyJCvr6/69u2riRMn3vRuFkBdZrVY9dNWDyk6OEobMrYo5cwe7cxO1r7cA3qy/c/Uu0UPWS11ZtAUAAAAgBpQp0Y2eCJGNsDdHS04rjVHNiin5KwkKaxxGz0V8XO1bhRqcjLzcV0C7ofrEnAvXJOA+zFqZAN/fgRwV8ID2mnmA9M14r7H5WPz1omLp/SH3Yu09sgmXXJcMjseAAAAABNQNgC4azarTY/c21dzer+sHsFd5ZJLOzKTNG/Xm0o5s0cMoAIAAAA8C2UDAMM09WmiCZ3H6oVukxTiG6SismKtOLhab+9dquziM2bHAwAAAFBLKBsAGC4yMFyv9vqNnmw3RN5WuzIKTyhu99taf3SzLjsumx0PAAAAQA2jbABQI7ysXhrYtr9m956hrkGd5XQ5tfX7f+r1XQuVevZbplYAAAAA9RhlA4AaFdggQJO7PK2pXSeoecNmulB2UcvSVmrJvv/R2ZJzZscDAAAAUAMoGwDUik7NIjWr10saGvaYvKxeOlxwVG+kvKVNxz5XaUWZ2fEAAAAAGIiyAUCtsdvs+lnYY5odE6vOzSJV4arQF6e+1PxdC/Vt7gGmVgAAAAD1BGUDgFrXvGEz/Z+o/9LkLs8osEGACkoL9e53f9Nf93+g3B/Omx0PAAAAwF3yMjsAAM9ksVjUNaiTOgSGK+HkNv3j9A6lnT+s9IIMDbz3p3qsTX952+xmxwQAAABwBxjZAMBU3jZvDWs/WK/FvKTIgHA5nA59dvIfeiP5TzqQd8jseAAAAADuAGUDALcQ4huk57s9q4mdf62mPk2Udzlff93/gd7dv0LnLxWYHQ8AAABANTCNAoDbsFgsig6OUsfA+/XZyX/oy+936tu8NB3MP6LBbR/RI/f2ld3KP1sAAACAu2NkAwC308CrgUbc97hmPjBd4U3bqdxZrv89nqD/m/JnHc4/anY8AAAAALdA2QDAbYX636MXu0/RMx1/qUbe/jr3Q54W73tP7x/4SIWlF8yOBwAAAOAGGI8MwK1ZLBb1uidaXZp30ObjX2hH5r+059x+pZ0/rJ+FPab+rfrIZrWZHRMAAADAjzCyAUCd0NCroUbd/6ReeeBFhTVuo9KKMm3I2KK43W/raMExs+MBAAAA+BHKBgB1SutGoXqpx3P6deQo+dv9lFNyVm/vjdfytNW6UFpkdjwAAAAAYhoFgDrIarHqJ6EPKCqokz49nqCkrGTtPrtH3+Ud1BPtBunhlr2ZWgEAAACYiJENAOosP7uvxkSM0Ms9n9e9jVrpcsVlrTu6SX/8ZrGOXzhldjwAAADAY1E2AKjz2jRurZd7Pq9fRoyQr1dDZRZn60+p/08fHVqnorJis+MBAAAAHodpFADqBavFqodb9la3oM7adOxzfZ2zW1/n7Na3uQc0rP0QPRTaS1YL/SoAAABQG/jkDaBeaeTtr193GKXYHlPV0r+FfnBc0ur09XrzmyU6dfF7s+MBAAAAHoGyAUC91K5JW73Sc5pGhg9TA1sDnS7K1JvfLNHH6etVUv6D2fEAAACAeo2yAUC9ZbPa1L91H83p/bIeCImWSy7tzNql13e9qa+zd8vpcpodEQAAAKiXKBsA1HtNfBppfKdfanr3KWrhF6Li8hJ9dHid3trzV31flG12PAAAAKDeoWwA4DHCA9pr5gPT9fP7hsrb5q3jF07pD7sXad2RTbrkuGR2PAAAAKDeoGwA4FFsVpsevbef5sTMUHRwlFxyaXtmkl7ftVApZ/bI5XKZHREAAACo8ygbAHikgAZNNbHzr/VCt0kK9m2ui2VFWnFwtRbtjVd28Rmz4wEAAAB1GmUDAI8WGRiuV3u9pCfaDZbdatfRwuOK2/221mds1mVHqdnxAAAAgDqJsgGAx7NbvTS47QDNjolV1+ad5HQ5tfX0PzU/eaH2nNvP1AoAAACgmigbAODfmjUM1OSoZ/Rc1H+peYNAFZZe0PsHPtKSff+jsyXnzI4HAAAA1BmUDQDwHzo376DXYmL1s7aPysvqpcMFR/VGylv69FiCyirKzI4HAAAAuD3KBgC4Dm+bXUPbDdSsXrHq2CxCFa4KJZ7apvnJf9K3uWlMrQAAAABugrIBAG4iyLeZpkZN0OQuTyvAp6nyLxfo3e9WaOn+D5R36bzZ8QAAAAC35GV2AABwdxaLRV2DOisy8H4lnNyqraf/qQPnD+twcoYGtumvgff+VHab3eyYAAAAgNuwuBgL7NYqKpzKzy+55X5eXlYFBPipoKBEDoezFpIBnutMyTmtPbJR6QUZkqTmDZtp9P1PqlOzyKp9nC6nThSdlMOrTF4Ob4U1aiurhcFkgNn4eQm4F65JwP0EBvrJZrv7z62UDW6OsgFwTy6XS3vO7dffj/6vLpRdlCR1DeqskeFP6PTFTK07+qkKSy9U7d/Up4lGhQ9Tt+AuZkUGIH5eAu6GaxJwP5QNHoKyAXBvlx2X9dmJf+jLzJ1yupyyWWyqcFXccP9JncdROAAm4ucl4F64JgH3Y1TZwJheALgLDbwaaET445r5wHS1b9L2pkWDJH1y9FM5XXyYAgAAQP1G2QAABgj1v0dDwwbecr+C0gvKKDxRC4kAAAAA81A2AIBBisqKbmu/i6UXazgJAAAAYC7KBgAwSGOfxobuBwAAANRVlA0AYJD7moapqU+Tm+4T4NNE9zUNq6VEAAAAgDkoGwDAIFaLVaPCh910n5Hhw2S18E8vAAAA6jc+8QKAgboFd9GkzuOuGeEQ4NOE214CAADAY3iZHQAA6ptuwV0UFdRJJ4pOyuFVJi+Ht8IatWVEAwAAADwGZQMA1ACrxaqIwPsUEOCngoISORxOsyMBAAAAtYY/swEAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENRNgAAAAAAAENZXC6Xy+wQuDGXyyWn8/b+F9lsVlVUOGs4EYDq4LoE3A/XJeBeuCYB92K1WmSxWO76PJQNAAAAAADAUEyjAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhqJsAAAAAAAAhvIyOwDuXG5urpKSknTgwAF99913OnTokEpLS9WrVy99+OGHZscDPIrL5dLevXu1bds2paam6vjx4youLlajRo3UsWNHDR8+XE888YQsFovZUQGP8vnnn+tf//qX0tLSdO7cORUWFsput6tt27bq16+fnnnmGQUEBJgdE/BoO3bs0OTJkyVJLVu21LZt20xOBHiWxYsXa8mSJTfdZ+7cuRozZky1zkvZUIdt2bJFcXFxZscAIGnXrl0aP3581ePWrVurZcuWysrKUlJSkpKSkrRlyxYtXrxY3t7e5gUFPMzSpUt1+PBheXt7KygoSBEREcrPz9fBgwd18OBBrV27VsuWLVNkZKTZUQGPVFJSorlz55odA4CkZs2aqU2bNtfdFhQUVO3zUTbUYf7+/nrwwQfVpUsXdenSRQcPHtQ777xjdizAI7lcLrVq1UrPPPOMhg4dqmbNmlVt27hxo2bPnq3t27dr0aJFevnll01MCniWsWPHKiwsTN26dZPdbq96Pj09XTNmzNCRI0cUGxurLVu2mJgS8FxvvfWWsrOz9cgjj2jr1q1mxwE8Wt++fbVgwQLDzkfZUIeNHDlSI0eOrHp89uxZE9MAni0qKkoJCQlX/TJTafjw4Tpz5ozeeustffLJJ4qNjZXVypI5QG0YPXr0dZ+PiIjQG2+8oVGjRikjI0PHjh1T+/btazkd4Nn27dunlStX6pFHHtGjjz5K2QDUM3zaBQAD+Pv7X7doqNS3b19JUmFhofLz82srFoCbaNeuXdXXly5dMjEJ4HnKy8s1e/ZsNWjQQHPmzDE7DoAawMgGAKgFly9frvq6QYMGJiYBUCk1NVWS5Ovrq7CwMJPTAJ4lPj5eR44c0cyZM3XPPfeYHQeApMOHDys2Nla5ubny8/NTRESEhg4dqvDw8Ds6H2UDANSCyvngkZGR8vf3NzkN4LmcTmfV3ZwWLlwoSZoxY4b8/PxMTgZ4jmPHjik+Pl6dOnXSuHHjzI4D4N8OHTqkQ4cOVT3etm2bli5dqqefflqvvPKKbDZbtc5H2QAANezAgQNavXq1JFXd2gtA7Vq+fPk1d3CKiorSggULqqY5Aah5LpdLs2bNksPh0Lx586r9ywsA4wUHB2vatGl6+OGH1apVK/n7++vEiRNatWqVVq9erRUrVsjLy0u//e1vq3VeygYAqEF5eXl64YUX5HA49Nhjj2no0KFmRwI8UkhIiKKjo1VRUaHs7Gzl5eXp0KFD2rRpk7p166bGjRubHRHwCKtWrdKePXs0btw4denSxew4ACQ99dRT1zwXERGhefPmqVWrVlq4cKFWrFihX/3qV2rVqtVtn5cFIgGghhQVFWnSpEnKzs5Wp06dDL2VEIDqGTJkiD7++GOtXbtWO3fu1MaNG9W1a1dt3rxZTz/9tCoqKsyOCNR7Z8+e1Z///GeFhIRo+vTpZscBcBsmTJig4OBgORwObdu2rVrHUjYAQA0oKSnRs88+q4MHDyo8PFzvv/8+azUAbiQyMlLx8fEKCAjQoUOHqtZVAVBz5s+fr+LiYs2aNYufiUAdYbPZ1LVrV0nSqVOnqnUs0ygAwGCXLl3SlClTtG/fPrVt21YffPCBAgICzI4F4D/4+/urV69eSkxMVFpamoYNG2Z2JKBeO3jwoCRp3rx5mjdv3lXbKu/alJOTo4ceekiStHjxYkVHR9duSADXqLy9u8PhqNZxlA0AYKDS0lI999xz2r17t1q2bKnly5crKCjI7FgAbqDygxPTKIDak5eXd8NtTqezant5eXltRQJwE0ePHpWkat+mlrIBAAxSXl6uF154QV9//bVCQkK0YsUKtWjRwuxYAG6gsLBQKSkpkqQOHTqYnAao/24233v9+vWaOXOmWrZsWe154QBqzvbt26vKhspRR7eLNRsAwAAVFRWKjY3Vjh07FBQUpBUrVqh169ZmxwI8WkpKit555x1lZmZesy0tLU0TJ05UUVGRQkJCNHjwYBMSAgBgrqNHj2rOnDk6fPjwVc87nU5t3rxZsbGxkqT+/fsrKiqqWudmZEMdlpOTo+HDh1c9LisrkyTt2bNHMTExVc8/++yzmjRpUm3HAzzK559/rsTEREmSt7e3Xn311RvuO3v2bHXs2LG2ogEe6+LFi1q0aJEWLVqkoKAgBQcHy2azKScnR7m5uZKu3BIzPj5efn5+JqcFAKD2ORwOrVmzRmvWrFHTpk0VGhoqm82m06dP68KFC5Kknj176o9//GO1z03ZUIdVVFSosLDwmucdDsdVz1cuuAOg5lSWfZKUlZWlrKysG+5bVFRUG5EAj9e9e3fNnDlTycnJysjI0MmTJ1VWVqbGjRsrJiZGAwYM0MiRI1kVHwDgsVq2bKnp06dr3759OnbsmE6dOqWysjI1adJEffv21eOPP67HH39cNput2ue2uFwuVw1kBgAAAAAAHoo1GwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAAAAgKEoGwAAAO5ARESEIiIilJycbHYUAADcjpfZAQAAQP2wePFiLVmy5Lb3T09Pr8E0AADATJQNAADAcM2bNzc7AgAAMBFlAwAAMFxSUpLZEQAAgIlYswEAAAAAABiKkQ0AAMB0AwYMUFZWluLi4jRw4EDFx8friy++UE5Ojho2bKgePXpoypQp6tq16w3PUVFRoQ0bNujTTz9Venq6SkpKFBAQoO7du2vs2LGKiYm5aYacnBx9+OGHSkpKUmZmpsrLyxUcHKzw8HANGjRIQ4YMkY+Pz3WPLS4u1nvvvafExERlZ2erYcOG6tatm6ZOnXrTzAAA1FeUDQAAwG1cvHhRI0eO1IkTJ2S32+Xj46PCwkJt3bpVX375pebPn6+RI0dec1xRUZGmTp2qlJQUSZLNZpOfn59yc3OVmJioxMRETZgwQa+88sp1X3fjxo2aM2eOSktLJUl2u11+fn7KycnR999/r23btikiIkIdOnS45tjc3FyNGDFCp06dko+Pj6xWqwoLC7V9+3YlJSVp6dKl6tOnj4HfJQAA3B/TKAAAgNtYsmSJ8vPz9fbbb2vfvn1KTU3VZ599pl69esnpdOr3v/+90tLSrjnutddeU0pKiux2u2bNmqXU1FTt3r1bX331lX7xi19IkpYtW6aPP/74mmO3b9+u3/3udyotLVV0dLRWrlyp/fv3Kzk5WXv37tXKlSs1evRo2e3262Z+/fXXZbfbtWLFCu3bt0979+7VunXrFBYWpvLycs2ZM0dOp9PYbxQAAG7O4nK5XGaHAAAAdd+Pb315q7tRDBkyRLNmzap6XDmNQpKWL1+un/zkJ1ftf/nyZT355JM6efKk+vXrp3fffbdq27fffqvRo0dLuvKL/1NPPXXN602bNk2JiYkKCAjQjh07qqZDOBwODRo0SJmZmerRo4eWL18ub2/v23q/ERERkqTAwEBt3rxZzZo1u2p7enq6hg0bJklatWqVevTocVvnBQCgPmBkAwAAMFxeXt5N/ysuLr7ucdHR0dcUDZLUoEEDTZw4UZL01VdfqaioqGrbZ599Jkm65557NGrUqOue98UXX5QkFRQUXHWnjOTkZGVmZkqSZs6cedtFw4+NHj36mqJBulJGtGrVStKV4gEAAE/Cmg0AAMBwd/rLde/evW+5zel0Ki0trerxgQMHJEkxMTGyWq//d5T27dsrJCREZ8+e1YEDBzRgwABJ0t69eyVJQUFB6tKlyx1lvtkCkMHBwcrMzNSFCxfu6NwAANRVjGwAAABuIyQk5La25efnV319/vz5Wx4rXRn58OP9pSuLO0pSaGho9cP+m5+f3w23eXld+buOw+G44/MDAFAXUTYAAACPZbFYzI4AAEC9RNkAAADcxtmzZ29rW2BgYNXXleslnDlz5qbnrtz+4/UVKheyzM7Orn5YAABwQ5QNAADAbSQnJ99ym9VqVceOHaue79y5c9X2G91i8tixY1VlxY/XZoiOjpZ0ZTrFd999d3fhAQBAFcoGAADgNlJTU69bOJSWlmrZsmWSpD59+qhx48ZV24YOHSrpysiHdevWXfe8f/nLXyRJAQEBevDBB6uej4mJUevWrSVJcXFxKisrM+aNAADg4SgbAACA22jUqJGmTZumhISEqkUVjx07psmTJ+v48eOy2WyaNm3aVcdERUVp0KBBkqT58+fro48+0qVLlyRdGbEwa9YsJSQkSLpyC0wfH5+qY202m2bPni2LxaLU1FSNHz9e33zzTdUIibKyMiUnJ2vGjBnKyMio8fcPAEB9wa0vAQCA4R566KFb7rN48eKqaQyVnn/+ea1evVovvviivL295ePjo6KiIklXFnOcO3fudW9R+cYbb6igoEApKSmaP3++4uLi5Ofnp4sXL8rlckmSJkyYoDFjxlxzbL9+/bRgwQLNnj1bqampGjt2rLy9veXr66vi4uKq0mPixInV/j4AAOCpKBsAAIDh8vLybrlPeXn5Nc81btxYn3zyieLj4/XFF18oJydHTZs2Vffu3TVlyhR17979uudq1KiRli9frg0bNmjTpk1KT0/XDz/8oObNmys6Olpjx45VTEzMDbMMHz5cPXv21N/+9jclJSUpOztbpaWlCg0N1f3336+BAweqffv2t/8NAADAw1lclXU/AACASQYMGKCsrCzFxcVpxIgRZscBAAB3iTUbAAAAAACAoSgbAAAAAACAoSgbAAAAAACAoSgbAAAAAACAoVggEgAAAAAAGIqRDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFCUDQAAAAAAwFD/H5rkMC/CpPHoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "df_stats = pd.read_parquet(f\"{output_dir}/training_stats.parquet\")\n", + "\n", + "sns.set(style='darkgrid')\n", + "\n", + "sns.set(font_scale=1.5)\n", + "plt.rcParams[\"figure.figsize\"] = (12,6)\n", + "\n", + "plt.plot(df_stats['Training Loss'], 'b-o', label=\"Training\")\n", + "plt.plot(df_stats['Valid. Loss'], 'g-o', label=\"Validation\")\n", + "\n", + "plt.title(\"Training & Validation Loss\")\n", + "plt.xlabel(\"Epoch\")\n", + "plt.ylabel(\"Loss\")\n", + "plt.legend()\n", + "plt.xticks([1, 2, 3, 4, 5])\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YQtCSSCPCni1" + }, + "source": [ + "13. Load and test the model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "21C7YczyCCIq", + "outputId": "6e88c0bd-17b0-4ebb-c83a-4a8c00407f2d" + }, + "outputs": [], + "source": [ + "from transformers import AutoModelForCausalLM, AutoTokenizer\n", + "import torch\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "tokenizer = AutoTokenizer.from_pretrained(output_dir) # nicholasKluge/Aira-Instruct-PT-1B7\n", + "aira = AutoModelForCausalLM.from_pretrained(output_dir) # nicholasKluge/Aira-Instruct-PT-1B7\n", + "\n", + "aira.eval()\n", + "aira.to(device)\n", + "\n", + "question = input(\"Enter your question: \")\n", + "\n", + "inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors=\"pt\").to(device)\n", + "\n", + "responses = aira.generate(**inputs,\n", + " bos_token_id=tokenizer.bos_token_id,\n", + " pad_token_id=tokenizer.pad_token_id,\n", + " eos_token_id=tokenizer.eos_token_id,\n", + " do_sample=True,\n", + " early_stopping=True,\n", + " top_k=30,\n", + " max_length=200,\n", + " top_p=0.3,\n", + " temperature=0.2,\n", + " num_return_sequences=2)\n", + "\n", + "print(f\"Question: 👤 {question}\\n\")\n", + "\n", + "for i, response in enumerate(responses):\n", + " print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, \"\")}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "odbRZ_yXCni9" + }, + "source": [ + "Done! 🤗" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "machine_shape": "hm", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "01956825f60b45a1afc34045d153055b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_622d696b4068401b93f5b2bae0074c62", + "IPY_MODEL_458a951aa25e489fa544507fb625043d", + "IPY_MODEL_436bf1ac107e44c7a62b483c8fee5a39" + ], + "layout": "IPY_MODEL_2375650cbab7417a9c729fa04d45f63e" + } + }, + "028b1ad7812149fdbadd9472555eae63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "03107de13b4c40abb408a36a67b26596": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a22e71845484a2db8ac6f826846220e", + "placeholder": "​", + "style": "IPY_MODEL_32671f3bd3904184a877513c7a70e29c", + "value": " 2.13M/2.13M [00:00<00:00, 53.9MB/s]" + } + }, + "0535fdc113dc4d3d89bef23302be1e63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0baa95fe9bff4f47bdc8ec447b295587", + "max": 2131332, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_799f8ec3f5ae4d938d04bdea16b964f7", + "value": 2131332 + } + }, + "06a59990a8e849cb8c904fd847de5482": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e366208c46f64a5db9da8dc482e3af77", + "max": 1975631, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_99efe6ebfd1e4ce1adc14e00cea36e36", + "value": 1975631 + } + }, + "0894d95aeedf4162a51ab5ac11d71d40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0993950d12b04a65bceedbd79593dda3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0baa95fe9bff4f47bdc8ec447b295587": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bd061df19f240308df7697aea1811ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c1d8e086a46485d9b3fac20504ad7e2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ce91c595730407990bf0e723abb52ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d03b45e3d2e4c849fbb888551257f7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d17dcbf836144509f99e1e38b860693": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0e8cc859a0184905a6df4068d934cd5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11ca46a9caf342bf8c2207a28153499e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1200df7ca4904df29def632aab9d6cf1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14e4534b4516486aa39e179b69c6d24e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "170ee76891de4791839232d5c725a823": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_61f4d3bdadd647b38ba22fa10052f24d", + "IPY_MODEL_89ecb77da42042ceb338ab2830e8169c", + "IPY_MODEL_cc77332985674b8faead20cc86838760" + ], + "layout": "IPY_MODEL_7f2a103614744b95aaa2552b15963276" + } + }, + "18a30366a95b4904a9c5db3644cfe431": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1aa95d5717694f909f993fda65750ae7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ac30d68d0e14d158fd7112863a4514e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_64c3c307d7ff4588ab62c2adfa4fff75", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_573e8db169e3442b9ee3364b0fd730e7", + "value": 4 + } + }, + "1c1114d4b6b8444b8509b5fa01076d10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_938310067bd548d7bdcc428d70186660", + "IPY_MODEL_cac98c9788da4d56a75e9b50b165b513", + "IPY_MODEL_e2b8561b43fe41cd80c913c46ef075ab" + ], + "layout": "IPY_MODEL_898b72964dc5439a8ac43efc232ff335" + } + }, + "1dc3a9075a7444ad9b85005b3d97c0c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d01c2954af14518a4cc1df1ace54fde", + "placeholder": "​", + "style": "IPY_MODEL_d90838db1a0e4e1db923c932b0499e1c", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "1eceb7c2191b4028b9b59155bddb629f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20d3fe94880d42d9933eed798bc7e834": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_310f80a796ca4fcaadbe56b06ffd356e", + "IPY_MODEL_525ed7d03ad34c6b92c41ab5f856477a", + "IPY_MODEL_267d4e2077fa441fab2210e85559c530" + ], + "layout": "IPY_MODEL_0993950d12b04a65bceedbd79593dda3" + } + }, + "20e0d95da7fd4042b7e00695e05bfd69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "214a356f4ad8479caefefcce1a03b1de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0b08121718a4635bb09f14e9d1e825e", + "placeholder": "​", + "style": "IPY_MODEL_592b7409266e4ee9a98bc39291cf0ad0", + "value": "Downloading model.safetensors: 100%" + } + }, + "23305514b6ad4c9ca32453ff3ddbeb12": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2375650cbab7417a9c729fa04d45f63e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "259421baf1da43858a0412c14b848640": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25e95ecfb5894eb497c6b0448754c3c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "267d4e2077fa441fab2210e85559c530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26bf84b4726040d7a936c46a8e119fe6", + "placeholder": "​", + "style": "IPY_MODEL_028b1ad7812149fdbadd9472555eae63", + "value": " 0/10012 [00:00<?, ? examples/s]" + } + }, + "26bf84b4726040d7a936c46a8e119fe6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "275832c1ff5e4ab7a70c5239e9b5050f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "276a0d8085d04a6e977a399598b5c3ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_84dec9e3ffa0475692f66136978d49f6", + "placeholder": "​", + "style": "IPY_MODEL_0d17dcbf836144509f99e1e38b860693", + "value": " 1.98M/1.98M [00:00<00:00, 60.8MB/s]" + } + }, + "2b05e9f1a0ab47568cff646264cadba2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b4e6f056871491b8255a1bcc88aafaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2bda638a3089418189e40b43336e2ec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_956a841201544355b72bd0875f852727", + "placeholder": "​", + "style": "IPY_MODEL_259421baf1da43858a0412c14b848640", + "value": " 14.4M/14.4M [00:00<00:00, 101MB/s]" + } + }, + "2c823bac025d47e7bbf1482f366cec75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2dd26b8f83324717aa5ef039a4410675": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ef17c1437a04819825095ca10bc0839": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fb2ebf6a251413f85d31c479b5c8ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_769248f0fde6491189c436065a408711", + "placeholder": "​", + "style": "IPY_MODEL_8c33149721aa46038daadd9ec17cf5f1", + "value": "Downloading data: 100%" + } + }, + "30cd4d5828a84d70a0eb63230b943de8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "310f80a796ca4fcaadbe56b06ffd356e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9047d2b6465d4d3296227805f276b7c9", + "placeholder": "​", + "style": "IPY_MODEL_6a8c9b8936924429b8651bc812bda649", + "value": "Generating aira_english split: 0%" + } + }, + "32671f3bd3904184a877513c7a70e29c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "32aa48ecce9f4463812e99f39cc9240c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fb5c8a3a5f224a90ba8219a7d761fbfb", + "IPY_MODEL_874341edbb69484896c249e121095740", + "IPY_MODEL_60fbf73caded446a8992087db6bac051" + ], + "layout": "IPY_MODEL_a7550b737bfd4f04a7ccaea9e434650b" + } + }, + "35e3d18623344d91bd27f4dc910488c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cec8cf19ee44491aa7d40f31879112b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3d69341decff4c0194a5df523f2e5ef7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ce91c595730407990bf0e723abb52ca", + "placeholder": "​", + "style": "IPY_MODEL_1eceb7c2191b4028b9b59155bddb629f", + "value": "Downloading data files: 100%" + } + }, + "3e23df5be01941ffb825915245b46c7c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "3ea2901b3ab746b0bf3bd7e07f74fb51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "436bf1ac107e44c7a62b483c8fee5a39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7612cc9b1ee04257980ef1fa8d644142", + "placeholder": "​", + "style": "IPY_MODEL_ad3fa15bbb8d495cb3a7247e75b6a839", + "value": " 53134/53134 [00:00<00:00, 509303.82 examples/s]" + } + }, + "44bdc888d6804f6681aade6e1b64fcac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "458a951aa25e489fa544507fb625043d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f112ddc798d74a318cb05a66fa305761", + "max": 53134, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_20e0d95da7fd4042b7e00695e05bfd69", + "value": 53134 + } + }, + "460a31fe26c847eebf395b2573abb02e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eebcd0a35be943d2a781dc0d15ee5c93", + "IPY_MODEL_5ec1cafb63f54339b667f1aa8cb03a3d", + "IPY_MODEL_6db51358a0954e2296d926e70521dbb3" + ], + "layout": "IPY_MODEL_e2fad4fe3fc34fc690747a1bce72b1da" + } + }, + "4a5fd86c98e04def91cd943881f9da63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0bd061df19f240308df7697aea1811ea", + "placeholder": "​", + "style": "IPY_MODEL_25e95ecfb5894eb497c6b0448754c3c2", + "value": "Generating aira_portuguese split: 0%" + } + }, + "4c2983b6314a45e98628f502228508d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d01c2954af14518a4cc1df1ace54fde": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d6d94b6584a4e7aa9b586fe5f63c705": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc3519c4fcb149f4b212dac78dd3e981", + "placeholder": "​", + "style": "IPY_MODEL_30cd4d5828a84d70a0eb63230b943de8", + "value": "Downloading readme: 100%" + } + }, + "4f7ffdefcf174f259e89d7fe73977e96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a79081a203a946cd84ed5bd603597ec8", + "placeholder": "​", + "style": "IPY_MODEL_f0d7f07618de440bb703739a32c731ea", + "value": "Downloading tokenizer.json: 100%" + } + }, + "51931eac7ab445018202bb7f5b9b2ed0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5216239dbacc4aecaed6515a617ed564": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "52597fc892664658bd0a8d12825c0f44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_214a356f4ad8479caefefcce1a03b1de", + "IPY_MODEL_caba7a442151440d803eb6baefed4b9f", + "IPY_MODEL_9b23b317d6da4e539d6593a11906f6bf" + ], + "layout": "IPY_MODEL_4c2983b6314a45e98628f502228508d7" + } + }, + "525ed7d03ad34c6b92c41ab5f856477a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63fc04394fce446b9660f19f065d1a24", + "max": 10012, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b05e9f1a0ab47568cff646264cadba2", + "value": 10012 + } + }, + "573e8db169e3442b9ee3364b0fd730e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "592b7409266e4ee9a98bc39291cf0ad0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "596bbbf672c24467b484471a24c5f000": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_645d4bd2764546cb959cf1811153d9d0", + "placeholder": "​", + "style": "IPY_MODEL_9ed860ed51ea4dd39507fa144e1bdadf", + "value": "Downloading data: 100%" + } + }, + "5a269dd5af7145afb3ff77251c37a541": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1dc3a9075a7444ad9b85005b3d97c0c6", + "IPY_MODEL_b127a0fa8c8742a9b71c404ea695a453", + "IPY_MODEL_ec25e96bc5dd44e9ba914aad7f6d96af" + ], + "layout": "IPY_MODEL_8f4bcbf44d414c12b997295b40a4e3ea" + } + }, + "5ce298a07c9b4ce2b2c803ac7e75f829": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5d8735309625479aa44e21d8aa74f2ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1200df7ca4904df29def632aab9d6cf1", + "placeholder": "​", + "style": "IPY_MODEL_2b4e6f056871491b8255a1bcc88aafaf", + "value": "Extracting data files: 100%" + } + }, + "5ec1cafb63f54339b667f1aa8cb03a3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44bdc888d6804f6681aade6e1b64fcac", + "max": 85, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_76038567a3f44befae499e2f38831191", + "value": 85 + } + }, + "60fbf73caded446a8992087db6bac051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ef17c1437a04819825095ca10bc0839", + "placeholder": "​", + "style": "IPY_MODEL_eaa8e8c2186d45a0ac68fd485ead5f8d", + "value": " 52874/52874 [00:00<00:00, 457845.09 examples/s]" + } + }, + "61267d4dc5bc456e9a7b27244cd528eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "61f4d3bdadd647b38ba22fa10052f24d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_275832c1ff5e4ab7a70c5239e9b5050f", + "placeholder": "​", + "style": "IPY_MODEL_67684be3b71d46d5828bc69781423274", + "value": "Downloading data: 100%" + } + }, + "622d696b4068401b93f5b2bae0074c62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a8a637905b34ef6943dd908b32fa0ba", + "placeholder": "​", + "style": "IPY_MODEL_0d03b45e3d2e4c849fbb888551257f7e", + "value": "Generating aira_instruct_english split: 100%" + } + }, + "63fc04394fce446b9660f19f065d1a24": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "645d4bd2764546cb959cf1811153d9d0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64c3c307d7ff4588ab62c2adfa4fff75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6521292a25f241d5b563971bc16a6fcd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67684be3b71d46d5828bc69781423274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "690f765ca74e4cf1a263bba1943302bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a8c9b8936924429b8651bc812bda649": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6cc0e75c86b14ae889e766871b127e04": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6da6fa826746450b9476aa4e135418bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6db51358a0954e2296d926e70521dbb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95c126c4f2d14e7fa5d7befe6693670e", + "placeholder": "​", + "style": "IPY_MODEL_14e4534b4516486aa39e179b69c6d24e", + "value": " 85.0/85.0 [00:00<00:00, 7.36kB/s]" + } + }, + "70348bde0e45482a9cca05075f70c9ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70936aca40034f1585b1c0ce23283493": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_596bbbf672c24467b484471a24c5f000", + "IPY_MODEL_ecd7c0f82f0647a88612439a615e95b2", + "IPY_MODEL_2bda638a3089418189e40b43336e2ec5" + ], + "layout": "IPY_MODEL_790a23cb2bf1485ba1fdc3936ecaf782" + } + }, + "71024cc40f9b439ea112bf7afdd65270": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "73c40bd736f546a29f2e9c4cfc5c1962": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23305514b6ad4c9ca32453ff3ddbeb12", + "placeholder": "​", + "style": "IPY_MODEL_f6436b699a294b908f42bf07523accef", + "value": " 4/4 [00:00<00:00, 220.08it/s]" + } + }, + "750efd3ab43a4d6f8da4ab1809c16764": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75b9800955e84822acbe2411acc1abc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75c121690ee740ad8dccc8655819bb60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d8735309625479aa44e21d8aa74f2ea", + "IPY_MODEL_1ac30d68d0e14d158fd7112863a4514e", + "IPY_MODEL_73c40bd736f546a29f2e9c4cfc5c1962" + ], + "layout": "IPY_MODEL_11ca46a9caf342bf8c2207a28153499e" + } + }, + "76038567a3f44befae499e2f38831191": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7612cc9b1ee04257980ef1fa8d644142": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "769248f0fde6491189c436065a408711": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77a2c4d7b87e4f1c9f6d8004c5c252cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "783b23c5e00e4279b20386b6af6aefd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "790a23cb2bf1485ba1fdc3936ecaf782": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "799f8ec3f5ae4d938d04bdea16b964f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7b22b84aca3644319f731852b1e3b040": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e14bf2addc1047c284701011ce97b249", + "IPY_MODEL_0535fdc113dc4d3d89bef23302be1e63", + "IPY_MODEL_03107de13b4c40abb408a36a67b26596" + ], + "layout": "IPY_MODEL_690f765ca74e4cf1a263bba1943302bb" + } + }, + "7be1756853ef46e09646866c301627c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7f2a103614744b95aaa2552b15963276": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83624f679b464ffa93096a3d29546c70": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84dec9e3ffa0475692f66136978d49f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "874341edbb69484896c249e121095740": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4ee35b41ee3499ba7a022f0074c912d", + "max": 52874, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0e8cc859a0184905a6df4068d934cd5d", + "value": 52874 + } + }, + "88a7da23d7f5414d85f77c0fb797072d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "898b72964dc5439a8ac43efc232ff335": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89ecb77da42042ceb338ab2830e8169c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6521292a25f241d5b563971bc16a6fcd", + "max": 15425051, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ce298a07c9b4ce2b2c803ac7e75f829", + "value": 15425051 + } + }, + "8a8a637905b34ef6943dd908b32fa0ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b35ee4d5d6c462c9e2076ae567577f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_750efd3ab43a4d6f8da4ab1809c16764", + "placeholder": "​", + "style": "IPY_MODEL_c570d605cbed4e998acc9b2802318e1f", + "value": " 14.5M/14.5M [00:00<00:00, 201MB/s]" + } + }, + "8c33149721aa46038daadd9ec17cf5f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ea02ee1bc014685903911c508008ee8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f4bcbf44d414c12b997295b40a4e3ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9047d2b6465d4d3296227805f276b7c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91ed5a79fb434cb0a7b2e46bb5489018": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "938310067bd548d7bdcc428d70186660": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8111a7f1dab4296ab279c78940b574a", + "placeholder": "​", + "style": "IPY_MODEL_6da6fa826746450b9476aa4e135418bb", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "956a841201544355b72bd0875f852727": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95c126c4f2d14e7fa5d7befe6693670e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95d9b5c626ce424aa3e007953708db9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "97bb7dd211f74e0a90866f59549ce90c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99efe6ebfd1e4ce1adc14e00cea36e36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a22e71845484a2db8ac6f826846220e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a4f95508a184921b8584ed91078ca26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a9aa9595c294dcb893b003551852839": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b23b317d6da4e539d6593a11906f6bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb573654fb4545a4ac9426fcca6fa49a", + "placeholder": "​", + "style": "IPY_MODEL_cc72777ede0241c9b50892176b32142a", + "value": " 3.44G/3.44G [00:13<00:00, 258MB/s]" + } + }, + "9c056246d50b4c40afe381254e14f343": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2dd26b8f83324717aa5ef039a4410675", + "max": 5110, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_783b23c5e00e4279b20386b6af6aefd5", + "value": 5110 + } + }, + "9ed860ed51ea4dd39507fa144e1bdadf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a32809d1f9874f5796e1a521ebacdc8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1aa95d5717694f909f993fda65750ae7", + "max": 10021, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ea2901b3ab746b0bf3bd7e07f74fb51", + "value": 10021 + } + }, + "a7550b737bfd4f04a7ccaea9e434650b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "a79081a203a946cd84ed5bd603597ec8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aaa34ad82fcf4edb805054e8b9d68e29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9c7c2d9fc8d4457b91bb2000bea2f29", + "placeholder": "​", + "style": "IPY_MODEL_71024cc40f9b439ea112bf7afdd65270", + "value": " 0/10021 [00:00<?, ? examples/s]" + } + }, + "ac72fc383d104facb2c499f91d361afe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad3fa15bbb8d495cb3a7247e75b6a839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0ede4e791c0403dbc90bb02eb44d389": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b127a0fa8c8742a9b71c404ea695a453": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91ed5a79fb434cb0a7b2e46bb5489018", + "max": 222, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5216239dbacc4aecaed6515a617ed564", + "value": 222 + } + }, + "b4ee35b41ee3499ba7a022f0074c912d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b688b02e6f6548179ab064a1ce454745": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f7ffdefcf174f259e89d7fe73977e96", + "IPY_MODEL_bdca03e1d74b4e6c93595d5412caa119", + "IPY_MODEL_8b35ee4d5d6c462c9e2076ae567577f4" + ], + "layout": "IPY_MODEL_70348bde0e45482a9cca05075f70c9ab" + } + }, + "b8111a7f1dab4296ab279c78940b574a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bdca03e1d74b4e6c93595d5412caa119": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_77a2c4d7b87e4f1c9f6d8004c5c252cf", + "max": 14500438, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_35e3d18623344d91bd27f4dc910488c1", + "value": 14500438 + } + }, + "bf4b344c06ce453599b77c4e5583cf7d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1e8f36806354b8aa90285c545111df3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf4b344c06ce453599b77c4e5583cf7d", + "placeholder": "​", + "style": "IPY_MODEL_61267d4dc5bc456e9a7b27244cd528eb", + "value": " 4/4 [00:03<00:00, 1.08it/s]" + } + }, + "c2b43552429842dcbb5c4180d5692f1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2fb2ebf6a251413f85d31c479b5c8ebe", + "IPY_MODEL_06a59990a8e849cb8c904fd847de5482", + "IPY_MODEL_276a0d8085d04a6e977a399598b5c3ec" + ], + "layout": "IPY_MODEL_8ea02ee1bc014685903911c508008ee8" + } + }, + "c570d605cbed4e998acc9b2802318e1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c6f1278b534a4b7983adcb776ce7b4fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0ede4e791c0403dbc90bb02eb44d389", + "placeholder": "​", + "style": "IPY_MODEL_fecfd7ecba6547219f36de89e154f8c4", + "value": " 5.11k/5.11k [00:00<00:00, 378kB/s]" + } + }, + "c9c7c2d9fc8d4457b91bb2000bea2f29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "caba7a442151440d803eb6baefed4b9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e386206ba654406f80b7d7ab2d3d3e87", + "max": 3444848602, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0894d95aeedf4162a51ab5ac11d71d40", + "value": 3444848602 + } + }, + "cac98c9788da4d56a75e9b50b165b513": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97bb7dd211f74e0a90866f59549ce90c", + "max": 715, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_75b9800955e84822acbe2411acc1abc5", + "value": 715 + } + }, + "cc72777ede0241c9b50892176b32142a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cc77332985674b8faead20cc86838760": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f74a7011a3014fffa37d92129bdc7421", + "placeholder": "​", + "style": "IPY_MODEL_7be1756853ef46e09646866c301627c4", + "value": " 15.4M/15.4M [00:00<00:00, 87.4MB/s]" + } + }, + "cd3d68f82a984432b60e4935a579fb64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3d69341decff4c0194a5df523f2e5ef7", + "IPY_MODEL_d06879a3e92e490ca28c2193973c2fbb", + "IPY_MODEL_c1e8f36806354b8aa90285c545111df3" + ], + "layout": "IPY_MODEL_0c1d8e086a46485d9b3fac20504ad7e2" + } + }, + "d06879a3e92e490ca28c2193973c2fbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c823bac025d47e7bbf1482f366cec75", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_95d9b5c626ce424aa3e007953708db9c", + "value": 4 + } + }, + "d32ab3e25fb84ead9c05ad253fe46e93": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7e3d3b78ca448738afd7990838fd58d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a5fd86c98e04def91cd943881f9da63", + "IPY_MODEL_a32809d1f9874f5796e1a521ebacdc8b", + "IPY_MODEL_aaa34ad82fcf4edb805054e8b9d68e29" + ], + "layout": "IPY_MODEL_3e23df5be01941ffb825915245b46c7c" + } + }, + "d847da699488444d87cacec52820f3a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d90838db1a0e4e1db923c932b0499e1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9e48cf8d69b404cb0528b4a5bb9c23f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d6d94b6584a4e7aa9b586fe5f63c705", + "IPY_MODEL_9c056246d50b4c40afe381254e14f343", + "IPY_MODEL_c6f1278b534a4b7983adcb776ce7b4fd" + ], + "layout": "IPY_MODEL_9a9aa9595c294dcb893b003551852839" + } + }, + "dc3519c4fcb149f4b212dac78dd3e981": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e14bf2addc1047c284701011ce97b249": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83624f679b464ffa93096a3d29546c70", + "placeholder": "​", + "style": "IPY_MODEL_3cec8cf19ee44491aa7d40f31879112b", + "value": "Downloading data: 100%" + } + }, + "e2b8561b43fe41cd80c913c46ef075ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cc0e75c86b14ae889e766871b127e04", + "placeholder": "​", + "style": "IPY_MODEL_18a30366a95b4904a9c5db3644cfe431", + "value": " 715/715 [00:00<00:00, 61.5kB/s]" + } + }, + "e2fad4fe3fc34fc690747a1bce72b1da": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e366208c46f64a5db9da8dc482e3af77": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e386206ba654406f80b7d7ab2d3d3e87": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eaa8e8c2186d45a0ac68fd485ead5f8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec25e96bc5dd44e9ba914aad7f6d96af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51931eac7ab445018202bb7f5b9b2ed0", + "placeholder": "​", + "style": "IPY_MODEL_d847da699488444d87cacec52820f3a7", + "value": " 222/222 [00:00<00:00, 20.4kB/s]" + } + }, + "ecd7c0f82f0647a88612439a615e95b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d32ab3e25fb84ead9c05ad253fe46e93", + "max": 14391948, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_88a7da23d7f5414d85f77c0fb797072d", + "value": 14391948 + } + }, + "eebcd0a35be943d2a781dc0d15ee5c93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a4f95508a184921b8584ed91078ca26", + "placeholder": "​", + "style": "IPY_MODEL_faee2629b3c74773bd2f3538c275c1f9", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "f0b08121718a4635bb09f14e9d1e825e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0d7f07618de440bb703739a32c731ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f112ddc798d74a318cb05a66fa305761": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f6436b699a294b908f42bf07523accef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f724182dc2cf41c1a809a44b7c035751": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f74a7011a3014fffa37d92129bdc7421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "faee2629b3c74773bd2f3538c275c1f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fb573654fb4545a4ac9426fcca6fa49a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb5c8a3a5f224a90ba8219a7d761fbfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac72fc383d104facb2c499f91d361afe", + "placeholder": "​", + "style": "IPY_MODEL_f724182dc2cf41c1a809a44b7c035751", + "value": "Generating aira_instruct_portuguese split: 100%" + } + }, + "fecfd7ecba6547219f36de89e154f8c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}