nicholasKluge commited on
Commit
9971fe8
·
verified ·
1 Parent(s): 84e810a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -143,26 +143,26 @@ trainer.train()
143
 
144
  ## Fine-Tuning Comparisons
145
 
146
- | Models | [HateBr](https://huggingface.co/datasets/ruanchaves/hatebr) |
147
- |--------------------------------------------------------------------------------------------|-------------------------------------------------------------|
148
- | [Teeny Tiny Llama 460m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m) | 91.64 |
149
- | [Bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)| 91.57 |
150
- | [Bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) | 91.28 |
151
- | [Teeny Tiny Llama 160m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-160m) | 90.71 |
152
- | [Gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 87.42 |
 
 
 
153
 
154
  ## Cite as 🤗
155
 
156
  ```latex
157
 
158
- @misc{nicholas22llama,
159
- doi = {10.5281/zenodo.6989727},
160
- url = {https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m},
161
- author = {Nicholas Kluge Corrêa},
162
- title = {TeenyTinyLlama},
163
- year = {2023},
164
- publisher = {HuggingFace},
165
- journal = {HuggingFace repository},
166
  }
167
 
168
  ```
 
143
 
144
  ## Fine-Tuning Comparisons
145
 
146
+ To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications.
147
+
148
+ | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average |
149
+ |-----------------|-----------|------------|-----------|-----------|-----------|---------|
150
+ | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 |
151
+ | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 |
152
+ | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 |
153
+ | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 |
154
+
155
+ All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models.
156
 
157
  ## Cite as 🤗
158
 
159
  ```latex
160
 
161
+ @misc{correa24ttllama,
162
+ title = {TeenyTinyLlama: a pair of open-source tiny language models trained in Brazilian Portuguese},
163
+ author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar},
164
+ journal={arXiv},
165
+ year = {2024},
 
 
 
166
  }
167
 
168
  ```