File size: 2,917 Bytes
547a27d
 
 
 
2956da6
 
7efe713
 
 
547a27d
 
 
 
 
 
 
 
 
 
2956da6
547a27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- kensho/spgispeech
widget:
- example_title: Finance Speech
  src: https://drive.google.com/uc?id=151bzDnN_f0Dfjjrg36nI97tXM39t5Ka8
model-index:
- name: wav2vec2-base-finetuned-spgispeech-dev
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-spgispeech-dev

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [kensho/spgispeech](https://huggingface.co/datasets/kensho/spgispeech) dev dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2897
- Wer: 0.1508

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.8285        | 2.22  | 1500  | 0.3361          | 0.2754 |
| 0.2582        | 4.44  | 3000  | 0.2643          | 0.2205 |
| 0.1697        | 6.66  | 4500  | 0.2467          | 0.2006 |
| 0.1314        | 8.88  | 6000  | 0.2711          | 0.1927 |
| 0.1084        | 11.09 | 7500  | 0.2521          | 0.1872 |
| 0.0922        | 13.31 | 9000  | 0.2588          | 0.1827 |
| 0.0818        | 15.53 | 10500 | 0.2572          | 0.1783 |
| 0.0712        | 17.75 | 12000 | 0.2720          | 0.1766 |
| 0.067         | 19.97 | 13500 | 0.2873          | 0.1751 |
| 0.0594        | 22.19 | 15000 | 0.2753          | 0.1704 |
| 0.0546        | 24.41 | 16500 | 0.2794          | 0.1694 |
| 0.0505        | 26.63 | 18000 | 0.2811          | 0.1665 |
| 0.0467        | 28.85 | 19500 | 0.2906          | 0.1657 |
| 0.0417        | 31.07 | 21000 | 0.3043          | 0.1661 |
| 0.0395        | 33.28 | 22500 | 0.3068          | 0.1627 |
| 0.0368        | 35.5  | 24000 | 0.3096          | 0.1617 |
| 0.0334        | 37.72 | 25500 | 0.3036          | 0.1581 |
| 0.0322        | 39.94 | 27000 | 0.2819          | 0.1564 |
| 0.0286        | 42.16 | 28500 | 0.2936          | 0.1544 |
| 0.0279        | 44.38 | 30000 | 0.2914          | 0.1534 |
| 0.0264        | 46.6  | 31500 | 0.2957          | 0.1519 |
| 0.0241        | 48.82 | 33000 | 0.2897          | 0.1508 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1