nickpai commited on
Commit
ffdafeb
·
verified ·
1 Parent(s): c6cc994

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -3
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - vision-transformer
5
+ - ViT
6
+ - classification
7
+ - cifar10
8
+ - computer-vision
9
+ - deep-learning
10
+ - machine-learning
11
+ ---
12
+
13
+ # ViT-Classification-CIFAR10
14
+
15
+ ## Model Description
16
+
17
+ This model is a Vision Transformer (ViT) architecture trained on the CIFAR-10 dataset for image classification. It is trained from scratch without pre-training on a larger dataset.
18
+
19
+ **Metrics:**
20
+
21
+ * Test accuracy: 82.04%
22
+ * Test loss: 0.5560
23
+
24
+ ## Training Configuration
25
+
26
+ **Hardware:** NVIDIA RTX 3090
27
+
28
+ **Training parameters:**
29
+
30
+ * Epochs: 200
31
+ * Batch size: 2048
32
+ * Input size: 3x32x32
33
+ * Patch size: 4
34
+ * Sequence length: 8*8
35
+ * Embed size: 128
36
+ * Num of layers: 12
37
+ * Num of heads: 4
38
+ * Forward multiplier: 2
39
+ * Dropout: 0.1
40
+ * Optimizer: AdamW
41
+
42
+ ## Intended Uses & Limitations
43
+
44
+ This model is intended for practice purposes and exploration of ViT architectures on the CIFAR-10 dataset. It can be used for image classification tasks on similar datasets.
45
+
46
+ **Limitations:**
47
+
48
+ * This model is trained on a relatively small dataset (CIFAR-10) and might not generalize well to unseen data.
49
+ * Training is done without fine-tuning, potentially limiting its performance compared to a fine-tuned model.
50
+ * Training is performed on a single RTX 3090.
51
+
52
+ ## Training Data
53
+
54
+ The model is trained on the CIFAR-10 dataset, containing 60,000 32x32 color images in 10 classes.
55
+
56
+ * Training set: 50,000 images
57
+ * Test set: 10,000 images
58
+
59
+ **Data Source:** [https://paperswithcode.com/dataset/cifar-10](https://paperswithcode.com/dataset/cifar-10)
60
+
61
+ ## Documentation
62
+
63
+ * GitHub Repository: [ViT-Classification-CIFAR10](https://github.com/nick8592/ViT-Classification-CIFAR10.git)