nickprock commited on
Commit
21e0c10
·
1 Parent(s): 74353b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -7
README.md CHANGED
@@ -30,15 +30,34 @@ pip install -U sentence-transformers
30
  Then you can use the model like this:
31
 
32
  ```python
33
- from sentence_transformers import SentenceTransformer
34
- sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
35
 
36
- model = SentenceTransformer('nickprock/sentence-bert-base-italian-uncased')
37
- embeddings = model.encode(sentences)
38
- print(embeddings)
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ```
41
 
 
 
42
  ## Usage (HuggingFace Transformers)
43
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
44
 
@@ -55,7 +74,8 @@ def mean_pooling(model_output, attention_mask):
55
 
56
 
57
  # Sentences we want sentence embeddings for
58
- sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
 
59
 
60
  # Load model from HuggingFace Hub
61
  tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
@@ -73,7 +93,6 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
73
 
74
  print("Sentence embeddings:")
75
  print(sentence_embeddings)
76
-
77
  ```
78
 
79
 
 
30
  Then you can use the model like this:
31
 
32
  ```python
33
+ from sentence_transformers import SentenceTransformer, util
 
34
 
35
+ query = "Quante persone vivono a Londra?"
36
+ docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
 
37
 
38
+ #Load the model
39
+ model = SentenceTransformer('nickprock/mmarco-bert-base-italian-uncased')
40
+
41
+ #Encode query and documents
42
+ query_emb = model.encode(query)
43
+ doc_emb = model.encode(docs)
44
+
45
+ #Compute dot score between query and all document embeddings
46
+ scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
47
+
48
+ #Combine docs & scores
49
+ doc_score_pairs = list(zip(docs, scores))
50
+
51
+ #Sort by decreasing score
52
+ doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
53
+
54
+ #Output passages & scores
55
+ for doc, score in doc_score_pairs:
56
+ print(score, doc)
57
  ```
58
 
59
+
60
+
61
  ## Usage (HuggingFace Transformers)
62
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
63
 
 
74
 
75
 
76
  # Sentences we want sentence embeddings for
77
+ query = "Quante persone vivono a Londra?"
78
+ docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
79
 
80
  # Load model from HuggingFace Hub
81
  tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
 
93
 
94
  print("Sentence embeddings:")
95
  print(sentence_embeddings)
 
96
  ```
97
 
98