File size: 6,316 Bytes
7c77a5b d3cc4dc 7c77a5b a0c8c08 7c77a5b a0c8c08 7c77a5b d3cc4dc 7c77a5b d3cc4dc 7c77a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- banking77
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-banking77-classification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: banking77
type: banking77
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9321428571428572
widget:
- text: 'Can I track the card you sent to me? '
example_title: Card Arrival Example - English
- text: 'Posso tracciare la carta che mi avete spedito? '
example_title: Card Arrival Example - Italian
- text: Can you explain your exchange rate policy to me?
example_title: Exchange Rate Example - English
- text: Potete spiegarmi la vostra politica dei tassi di cambio?
example_title: Exchange Rate Example - Italian
- text: I can't pay by my credit card
example_title: Card Not Working Example - English
- text: Non riesco a pagare con la mia carta di credito
example_title: Card Not Working Example - Italian
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-banking77-classification
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3034
- Accuracy: 0.9321
- F1 Score: 0.9321
## Model description
Experiment on a cross-language model to assess how accurate the classification is by using for fine tuning an English dataset but later querying the model in Italian.
## Intended uses & limitations
The model can be used on text classification. In particular is fine tuned on banking domain for multilingual task.
## Training and evaluation data
The dataset used is [banking77](https://huggingface.co/datasets/banking77)
The 77 labels are:
|label|intent|
|:---:|:----:|
|0|activate_my_card|
|1|age_limit|
|2|apple_pay_or_google_pay|
|3|atm_support|
|4|automatic_top_up|
|5|balance_not_updated_after_bank_transfer|
|6|balance_not_updated_after_cheque_or_cash_deposit|
|7|beneficiary_not_allowed|
|8|cancel_transfer|
|9|card_about_to_expire|
|10|card_acceptance|
|11|card_arrival|
|12|card_delivery_estimate|
|13|card_linking|
|14|card_not_working|
|15|card_payment_fee_charged|
|16|card_payment_not_recognised|
|17|card_payment_wrong_exchange_rate|
|18|card_swallowed|
|19|cash_withdrawal_charge|
|20|cash_withdrawal_not_recognised|
|21|change_pin|
|22|compromised_card|
|23|contactless_not_working|
|24|country_support|
|25|declined_card_payment|
|26|declined_cash_withdrawal|
|27|declined_transfer|
|28|direct_debit_payment_not_recognised|
|29|disposable_card_limits|
|30|edit_personal_details|
|31|exchange_charge|
|32|exchange_rate|
|33|exchange_via_app|
|34|extra_charge_on_statement|
|35|failed_transfer|
|36|fiat_currency_support|
|37|get_disposable_virtual_card|
|38|get_physical_card|
|39|getting_spare_card|
|40|getting_virtual_card|
|41|lost_or_stolen_card|
|42|lost_or_stolen_phone|
|43|order_physical_card|
|44|passcode_forgotten|
|45|pending_card_payment|
|46|pending_cash_withdrawal|
|47|pending_top_up|
|48|pending_transfer|
|49|pin_blocked|
|50|receiving_money|
|51|Refund_not_showing_up|
|52|request_refund|
|53|reverted_card_payment?|
|54|supported_cards_and_currencies|
|55|terminate_account|
|56|top_up_by_bank_transfer_charge|
|57|top_up_by_card_charge|
|58|top_up_by_cash_or_cheque|
|59|top_up_failed|
|60|top_up_limits|
|61|top_up_reverted|
|62|topping_up_by_card|
|63|transaction_charged_twice|
|64|transfer_fee_charged|
|65|transfer_into_account|
|66|transfer_not_received_by_recipient|
|67|transfer_timing|
|68|unable_to_verify_identity|
|69|verify_my_identity|
|70|verify_source_of_funds|
|71|verify_top_up|
|72|virtual_card_not_working|
|73|visa_or_mastercard|
|74|why_verify_identity|
|75|wrong_amount_of_cash_received|
|76|wrong_exchange_rate_for_cash_withdrawal|
## Training procedure
```
from transformers import pipeline
pipe = pipeline("text-classification", model="nickprock/xlm-roberta-base-banking77-classification")
pipe("Non riesco a pagare con la carta di credito")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.8002 | 1.0 | 157 | 2.7771 | 0.5159 | 0.4483 |
| 2.4006 | 2.0 | 314 | 1.6937 | 0.7140 | 0.6720 |
| 1.4633 | 3.0 | 471 | 1.0385 | 0.8308 | 0.8153 |
| 0.9234 | 4.0 | 628 | 0.7008 | 0.8789 | 0.8761 |
| 0.6163 | 5.0 | 785 | 0.5029 | 0.9068 | 0.9063 |
| 0.4282 | 6.0 | 942 | 0.4084 | 0.9123 | 0.9125 |
| 0.3203 | 7.0 | 1099 | 0.3515 | 0.9253 | 0.9253 |
| 0.245 | 8.0 | 1256 | 0.3295 | 0.9227 | 0.9225 |
| 0.1863 | 9.0 | 1413 | 0.3092 | 0.9269 | 0.9269 |
| 0.1518 | 10.0 | 1570 | 0.2901 | 0.9338 | 0.9338 |
| 0.1179 | 11.0 | 1727 | 0.2938 | 0.9318 | 0.9319 |
| 0.0969 | 12.0 | 1884 | 0.2906 | 0.9328 | 0.9328 |
| 0.0805 | 13.0 | 2041 | 0.2963 | 0.9295 | 0.9295 |
| 0.063 | 14.0 | 2198 | 0.2998 | 0.9289 | 0.9288 |
| 0.0554 | 15.0 | 2355 | 0.2933 | 0.9351 | 0.9349 |
| 0.046 | 16.0 | 2512 | 0.2960 | 0.9328 | 0.9326 |
| 0.04 | 17.0 | 2669 | 0.3032 | 0.9318 | 0.9318 |
| 0.035 | 18.0 | 2826 | 0.3061 | 0.9312 | 0.9312 |
| 0.0317 | 19.0 | 2983 | 0.3030 | 0.9331 | 0.9330 |
| 0.0315 | 20.0 | 3140 | 0.3034 | 0.9321 | 0.9321 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|