File size: 6,316 Bytes
7c77a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3cc4dc
 
 
 
 
 
 
 
 
 
 
 
 
7c77a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0c8c08
7c77a5b
 
 
a0c8c08
7c77a5b
 
 
d3cc4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c77a5b
 
 
d3cc4dc
 
 
 
 
 
7c77a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: mit
tags:
- generated_from_trainer
datasets:
- banking77
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-banking77-classification
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: banking77
      type: banking77
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9321428571428572
widget:
  - text: 'Can I track the card you sent to me? '
    example_title: Card Arrival Example - English
  - text: 'Posso tracciare la carta che mi avete spedito? '
    example_title: Card Arrival Example - Italian
  - text: Can you explain your exchange rate policy to me?
    example_title: Exchange Rate Example - English
  - text: Potete spiegarmi la vostra politica dei tassi di cambio?
    example_title: Exchange Rate Example - Italian
  - text: I can't pay by my credit card
    example_title: Card Not Working Example - English
  - text: Non riesco a pagare con la mia carta di credito
    example_title: Card Not Working Example - Italian
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-banking77-classification

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3034
- Accuracy: 0.9321
- F1 Score: 0.9321

## Model description

Experiment on a cross-language model to assess how accurate the classification is by using for fine tuning an English dataset but later querying the model in Italian.

## Intended uses & limitations

The model can be used on text classification. In particular is fine tuned on banking domain for multilingual task.

## Training and evaluation data

The dataset used is [banking77](https://huggingface.co/datasets/banking77)

The 77 labels are:

|label|intent|
|:---:|:----:|
|0|activate_my_card|
|1|age_limit|
|2|apple_pay_or_google_pay|
|3|atm_support|
|4|automatic_top_up|
|5|balance_not_updated_after_bank_transfer|
|6|balance_not_updated_after_cheque_or_cash_deposit|
|7|beneficiary_not_allowed|
|8|cancel_transfer|
|9|card_about_to_expire|
|10|card_acceptance|
|11|card_arrival|
|12|card_delivery_estimate|
|13|card_linking|
|14|card_not_working|
|15|card_payment_fee_charged|
|16|card_payment_not_recognised|
|17|card_payment_wrong_exchange_rate|
|18|card_swallowed|
|19|cash_withdrawal_charge|
|20|cash_withdrawal_not_recognised|
|21|change_pin|
|22|compromised_card|
|23|contactless_not_working|
|24|country_support|
|25|declined_card_payment|
|26|declined_cash_withdrawal|
|27|declined_transfer|
|28|direct_debit_payment_not_recognised|
|29|disposable_card_limits|
|30|edit_personal_details|
|31|exchange_charge|
|32|exchange_rate|
|33|exchange_via_app|
|34|extra_charge_on_statement|
|35|failed_transfer|
|36|fiat_currency_support|
|37|get_disposable_virtual_card|
|38|get_physical_card|
|39|getting_spare_card|
|40|getting_virtual_card|
|41|lost_or_stolen_card|
|42|lost_or_stolen_phone|
|43|order_physical_card|
|44|passcode_forgotten|
|45|pending_card_payment|
|46|pending_cash_withdrawal|
|47|pending_top_up|
|48|pending_transfer|
|49|pin_blocked|
|50|receiving_money|
|51|Refund_not_showing_up|
|52|request_refund|
|53|reverted_card_payment?|
|54|supported_cards_and_currencies|
|55|terminate_account|
|56|top_up_by_bank_transfer_charge|
|57|top_up_by_card_charge|
|58|top_up_by_cash_or_cheque|
|59|top_up_failed|
|60|top_up_limits|
|61|top_up_reverted|
|62|topping_up_by_card|
|63|transaction_charged_twice|
|64|transfer_fee_charged|
|65|transfer_into_account|
|66|transfer_not_received_by_recipient|
|67|transfer_timing|
|68|unable_to_verify_identity|
|69|verify_my_identity|
|70|verify_source_of_funds|
|71|verify_top_up|
|72|virtual_card_not_working|
|73|visa_or_mastercard|
|74|why_verify_identity|
|75|wrong_amount_of_cash_received|
|76|wrong_exchange_rate_for_cash_withdrawal|


## Training procedure

```
from transformers import pipeline
pipe = pipeline("text-classification", model="nickprock/xlm-roberta-base-banking77-classification")
pipe("Non riesco a pagare con la carta di credito")
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.8002        | 1.0   | 157  | 2.7771          | 0.5159   | 0.4483   |
| 2.4006        | 2.0   | 314  | 1.6937          | 0.7140   | 0.6720   |
| 1.4633        | 3.0   | 471  | 1.0385          | 0.8308   | 0.8153   |
| 0.9234        | 4.0   | 628  | 0.7008          | 0.8789   | 0.8761   |
| 0.6163        | 5.0   | 785  | 0.5029          | 0.9068   | 0.9063   |
| 0.4282        | 6.0   | 942  | 0.4084          | 0.9123   | 0.9125   |
| 0.3203        | 7.0   | 1099 | 0.3515          | 0.9253   | 0.9253   |
| 0.245         | 8.0   | 1256 | 0.3295          | 0.9227   | 0.9225   |
| 0.1863        | 9.0   | 1413 | 0.3092          | 0.9269   | 0.9269   |
| 0.1518        | 10.0  | 1570 | 0.2901          | 0.9338   | 0.9338   |
| 0.1179        | 11.0  | 1727 | 0.2938          | 0.9318   | 0.9319   |
| 0.0969        | 12.0  | 1884 | 0.2906          | 0.9328   | 0.9328   |
| 0.0805        | 13.0  | 2041 | 0.2963          | 0.9295   | 0.9295   |
| 0.063         | 14.0  | 2198 | 0.2998          | 0.9289   | 0.9288   |
| 0.0554        | 15.0  | 2355 | 0.2933          | 0.9351   | 0.9349   |
| 0.046         | 16.0  | 2512 | 0.2960          | 0.9328   | 0.9326   |
| 0.04          | 17.0  | 2669 | 0.3032          | 0.9318   | 0.9318   |
| 0.035         | 18.0  | 2826 | 0.3061          | 0.9312   | 0.9312   |
| 0.0317        | 19.0  | 2983 | 0.3030          | 0.9331   | 0.9330   |
| 0.0315        | 20.0  | 3140 | 0.3034          | 0.9321   | 0.9321   |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1