--- license: mit tags: - generated_from_trainer datasets: - banking77 metrics: - accuracy model-index: - name: xlm-roberta-base-banking77-classification results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9321428571428572 widget: - text: 'Can I track the card you sent to me? ' example_title: Card Arrival Example - English - text: 'Posso tracciare la carta che mi avete spedito? ' example_title: Card Arrival Example - Italian - text: Can you explain your exchange rate policy to me? example_title: Exchange Rate Example - English - text: Potete spiegarmi la vostra politica dei tassi di cambio? example_title: Exchange Rate Example - Italian - text: I can't pay by my credit card example_title: Card Not Working Example - English - text: Non riesco a pagare con la mia carta di credito example_title: Card Not Working Example - Italian --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-banking77-classification This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3034 - Accuracy: 0.9321 - F1 Score: 0.9321 ## Model description Experiment on a cross-language model to assess how accurate the classification is by using for fine tuning an English dataset but later querying the model in Italian. ## Intended uses & limitations The model can be used on text classification. In particular is fine tuned on banking domain for multilingual task. ## Training and evaluation data The dataset used is [banking77](https://huggingface.co/datasets/banking77) The 77 labels are: |label|intent| |:---:|:----:| |0|activate_my_card| |1|age_limit| |2|apple_pay_or_google_pay| |3|atm_support| |4|automatic_top_up| |5|balance_not_updated_after_bank_transfer| |6|balance_not_updated_after_cheque_or_cash_deposit| |7|beneficiary_not_allowed| |8|cancel_transfer| |9|card_about_to_expire| |10|card_acceptance| |11|card_arrival| |12|card_delivery_estimate| |13|card_linking| |14|card_not_working| |15|card_payment_fee_charged| |16|card_payment_not_recognised| |17|card_payment_wrong_exchange_rate| |18|card_swallowed| |19|cash_withdrawal_charge| |20|cash_withdrawal_not_recognised| |21|change_pin| |22|compromised_card| |23|contactless_not_working| |24|country_support| |25|declined_card_payment| |26|declined_cash_withdrawal| |27|declined_transfer| |28|direct_debit_payment_not_recognised| |29|disposable_card_limits| |30|edit_personal_details| |31|exchange_charge| |32|exchange_rate| |33|exchange_via_app| |34|extra_charge_on_statement| |35|failed_transfer| |36|fiat_currency_support| |37|get_disposable_virtual_card| |38|get_physical_card| |39|getting_spare_card| |40|getting_virtual_card| |41|lost_or_stolen_card| |42|lost_or_stolen_phone| |43|order_physical_card| |44|passcode_forgotten| |45|pending_card_payment| |46|pending_cash_withdrawal| |47|pending_top_up| |48|pending_transfer| |49|pin_blocked| |50|receiving_money| |51|Refund_not_showing_up| |52|request_refund| |53|reverted_card_payment?| |54|supported_cards_and_currencies| |55|terminate_account| |56|top_up_by_bank_transfer_charge| |57|top_up_by_card_charge| |58|top_up_by_cash_or_cheque| |59|top_up_failed| |60|top_up_limits| |61|top_up_reverted| |62|topping_up_by_card| |63|transaction_charged_twice| |64|transfer_fee_charged| |65|transfer_into_account| |66|transfer_not_received_by_recipient| |67|transfer_timing| |68|unable_to_verify_identity| |69|verify_my_identity| |70|verify_source_of_funds| |71|verify_top_up| |72|virtual_card_not_working| |73|visa_or_mastercard| |74|why_verify_identity| |75|wrong_amount_of_cash_received| |76|wrong_exchange_rate_for_cash_withdrawal| ## Training procedure ``` from transformers import pipeline pipe = pipeline("text-classification", model="nickprock/xlm-roberta-base-banking77-classification") pipe("Non riesco a pagare con la carta di credito") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 3.8002 | 1.0 | 157 | 2.7771 | 0.5159 | 0.4483 | | 2.4006 | 2.0 | 314 | 1.6937 | 0.7140 | 0.6720 | | 1.4633 | 3.0 | 471 | 1.0385 | 0.8308 | 0.8153 | | 0.9234 | 4.0 | 628 | 0.7008 | 0.8789 | 0.8761 | | 0.6163 | 5.0 | 785 | 0.5029 | 0.9068 | 0.9063 | | 0.4282 | 6.0 | 942 | 0.4084 | 0.9123 | 0.9125 | | 0.3203 | 7.0 | 1099 | 0.3515 | 0.9253 | 0.9253 | | 0.245 | 8.0 | 1256 | 0.3295 | 0.9227 | 0.9225 | | 0.1863 | 9.0 | 1413 | 0.3092 | 0.9269 | 0.9269 | | 0.1518 | 10.0 | 1570 | 0.2901 | 0.9338 | 0.9338 | | 0.1179 | 11.0 | 1727 | 0.2938 | 0.9318 | 0.9319 | | 0.0969 | 12.0 | 1884 | 0.2906 | 0.9328 | 0.9328 | | 0.0805 | 13.0 | 2041 | 0.2963 | 0.9295 | 0.9295 | | 0.063 | 14.0 | 2198 | 0.2998 | 0.9289 | 0.9288 | | 0.0554 | 15.0 | 2355 | 0.2933 | 0.9351 | 0.9349 | | 0.046 | 16.0 | 2512 | 0.2960 | 0.9328 | 0.9326 | | 0.04 | 17.0 | 2669 | 0.3032 | 0.9318 | 0.9318 | | 0.035 | 18.0 | 2826 | 0.3061 | 0.9312 | 0.9312 | | 0.0317 | 19.0 | 2983 | 0.3030 | 0.9331 | 0.9330 | | 0.0315 | 20.0 | 3140 | 0.3034 | 0.9321 | 0.9321 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1