--- tags: - spacy - token-classification language: - en model-index: - name: en_xlnet_fine_tuned_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8847416707 - name: NER Recall type: recall value: 0.9002161737 - name: NER F Score type: f_score value: 0.8924118449 --- | Feature | Description | | --- | --- | | **Name** | `en_xlnet_fine_tuned_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.1,<3.6.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (18 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 89.24 | | `ENTS_P` | 88.47 | | `ENTS_R` | 90.02 | | `TRANSFORMER_LOSS` | 124848.21 | | `NER_LOSS` | 196123.19 |