nicolay-r commited on
Commit
c796a0b
·
verified ·
1 Parent(s): b742b88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -136
README.md CHANGED
@@ -1,199 +1,120 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
81
 
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: mit
5
  library_name: transformers
6
+ metrics:
7
+ - f1
8
+ pipeline_tag: text2text-generation
9
  ---
10
 
11
  # Model Card for Model ID
12
 
 
 
 
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
+ - **Developed by:** Reforged by [nicolay-r](https://github.com/nicolay-r), initial credits for implementation to [scofield7419](https://github.com/scofield7419)
18
+ - **Model type:** [Flan-T5](https://huggingface.co/docs/transformers/en/model_doc/flan-t5)
19
+ - **Language(s) (NLP):** English
20
+ - **License:** [Apache License 2.0](https://github.com/scofield7419/THOR-ISA/blob/main/LICENSE.txt)
21
 
22
+ ### Model Sources
 
 
 
 
 
 
23
 
24
+ - **Repository:** [Reasoning-for-Sentiment-Analysis-Framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
25
+ - **Paper:** https://arxiv.org/abs/2404.12342
26
+ - **Demo:** We have a [code on Google-Colab for launching the related model](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)
 
 
 
 
27
 
28
  ## Uses
29
 
 
 
30
  ### Direct Use
31
 
32
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
33
 
34
+ ### Downstream Use
35
 
36
+ Please refer to the [related section](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) of the **Reasoning-for-Sentiment-Analysis** Framework
37
 
38
+ With this example it applies this model (zero-shot-learning) in the `PROMPT` mode to the validation data of the RuSentNE-2023 competition for evaluation.
39
 
40
+ ```sh
41
+ python thor_finetune.py -m "nicolay-r/flan-t5-tsa-prompt-xl" -r "prompt" -d "rusentne2023" -z -bs 4 -f "./config/config.yaml"
42
+ ```
43
 
44
+ Following the [Google Colab Notebook]((https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)) for implementation reproduction.
 
 
45
 
 
46
 
47
+ ### Out-of-Scope Use
 
 
48
 
49
+ This model represent a fine-tuned version of the Flan-T5 on RuSentNE-2023 dataset.
50
+ Since dataset represent three-scale output answers (`positive`, `negative`, `neutral`),
51
+ the behavior in general might be biased to this particular task.
52
 
53
  ### Recommendations
54
 
 
 
55
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
56
 
57
  ## How to Get Started with the Model
58
 
59
+ Please proceed with the code from the related [Three-Hop-Reasoning CoT](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) section.
60
 
61
+ Or following the related section on [Google Colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb
62
+ )
63
 
64
  ## Training Details
65
 
66
  ### Training Data
67
 
68
+ We utilize `train` data which was **automatically translated into English using GoogleTransAPI**.
69
+ The initial source of the texts written in Russian, is from the following repository:
70
+ https://github.com/dialogue-evaluation/RuSentNE-evaluation
71
 
72
+ The translated version on the dataset in English could be automatically downloaded via the following script:
73
+ https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/rusentne23_download.py
74
 
75
  ### Training Procedure
76
 
77
+ This model has been trained using the PROMPT-finetuning.
 
 
78
 
79
+ For training procedure accomplishing, the [reforged version of THoR framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
80
 
81
+ [Google-colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb) could be used for reproduction.
82
 
83
+ The overall training process took **3 epochs**.
84
 
85
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/yemsl0unhvyOBBdbKbbaj.png)
86
 
 
87
 
88
+ #### Training Hyperparameters
89
 
90
+ - **Training regime:** All the configuration details were highlighted in the related
91
+ [config](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/config/config.yaml) file
92
 
93
  ## Evaluation
94
 
 
 
95
  ### Testing Data, Factors & Metrics
96
 
97
  #### Testing Data
98
 
99
+ The direct link to the `test` evaluation data:
100
+ https://github.com/dialogue-evaluation/RuSentNE-evaluation/blob/main/final_data.csv
 
 
 
 
 
 
 
101
 
102
  #### Metrics
103
 
104
+ For the model evaluation, two metrics were used:
105
+ 1. F1_PN -- F1-measure over `positive` and `negative` classes;
106
+ 2. F1_PN0 -- F1-measure over `positive`, `negative`, **and `neutral`** classes;
107
 
108
  ### Results
109
 
110
+ The test evaluation for this model [showcases](https://arxiv.org/abs/2404.12342) the F1_PN = 60.024
111
+
112
+ Below is the log of the training process that showcases the final peformance on the RuSentNE-2023 `test` set after 4 epochs (lines 5-6):
113
+ ```tsv
114
+ F1_PN F1_PN0 default mode
115
+ 0 66.678 73.838 73.838 valid
116
+ 1 68.019 74.816 74.816 valid
117
+ 2 67.870 74.688 74.688 valid
118
+ 3 65.090 72.449 72.449 test
119
+ 4 65.090 72.449 72.449 test
120
+ ```